Author: Quentin Vanhaelen
Publisher: Humana
ISBN: 9781071617694
Category : Science
Languages : en
Pages : 0
Book Description
This detailed book provides an overview of various classes of computational techniques, including machine learning techniques, commonly used for evaluating kinetic parameters of biological systems. Focusing on three distinct situations, the volume covers the prediction of the kinetics of enzymatic reactions, the prediction of the kinetics of protein-protein or protein-ligand interactions (binding rates, dissociation rates, binding affinities), and the prediction of relatively large set of kinetic rates of reactions usually found in quantitative models of large biological networks. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of expert implementation advice that leads to successful results. Authoritative and practical, Computational Methods for Estimating the Kinetic Parameters of Biological Systems will be of great interest for researchers working through the challenge of identifying the best type of algorithm and who would like to use or develop a computational method for the estimation of kinetic parameters.
Computational Methods for Estimating the Kinetic Parameters of Biological Systems
Author: Quentin Vanhaelen
Publisher: Humana
ISBN: 9781071617694
Category : Science
Languages : en
Pages : 0
Book Description
This detailed book provides an overview of various classes of computational techniques, including machine learning techniques, commonly used for evaluating kinetic parameters of biological systems. Focusing on three distinct situations, the volume covers the prediction of the kinetics of enzymatic reactions, the prediction of the kinetics of protein-protein or protein-ligand interactions (binding rates, dissociation rates, binding affinities), and the prediction of relatively large set of kinetic rates of reactions usually found in quantitative models of large biological networks. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of expert implementation advice that leads to successful results. Authoritative and practical, Computational Methods for Estimating the Kinetic Parameters of Biological Systems will be of great interest for researchers working through the challenge of identifying the best type of algorithm and who would like to use or develop a computational method for the estimation of kinetic parameters.
Publisher: Humana
ISBN: 9781071617694
Category : Science
Languages : en
Pages : 0
Book Description
This detailed book provides an overview of various classes of computational techniques, including machine learning techniques, commonly used for evaluating kinetic parameters of biological systems. Focusing on three distinct situations, the volume covers the prediction of the kinetics of enzymatic reactions, the prediction of the kinetics of protein-protein or protein-ligand interactions (binding rates, dissociation rates, binding affinities), and the prediction of relatively large set of kinetic rates of reactions usually found in quantitative models of large biological networks. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of expert implementation advice that leads to successful results. Authoritative and practical, Computational Methods for Estimating the Kinetic Parameters of Biological Systems will be of great interest for researchers working through the challenge of identifying the best type of algorithm and who would like to use or develop a computational method for the estimation of kinetic parameters.
Parameter Estimation in Biological Systems
Author: Joel Barry Swartz
Publisher:
ISBN:
Category : Biological models
Languages : en
Pages : 590
Book Description
Publisher:
ISBN:
Category : Biological models
Languages : en
Pages : 590
Book Description
An Introduction to Computational Systems Biology
Author: Karthik Raman
Publisher: CRC Press
ISBN: 0429944527
Category : Computers
Languages : en
Pages : 359
Book Description
This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields. Key Features: A hands-on approach to modelling Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models Thoughtful exercises to test and enable understanding of concepts State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design Emphasis on coding and software tools for systems biology Companion website featuring lecture videos, figure slides, codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/ An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others.
Publisher: CRC Press
ISBN: 0429944527
Category : Computers
Languages : en
Pages : 359
Book Description
This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields. Key Features: A hands-on approach to modelling Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models Thoughtful exercises to test and enable understanding of concepts State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design Emphasis on coding and software tools for systems biology Companion website featuring lecture videos, figure slides, codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/ An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others.
Modeling Biological Systems:
Author: James W. Haefner
Publisher: Springer Science & Business Media
ISBN: 9780387250113
Category : Science
Languages : en
Pages : 500
Book Description
I Principles 1 1 Models of Systems 3 1. 1 Systems. Models. and Modeling . . . . . . . . . . . . . . . . . . . . 3 1. 2 Uses of Scientific Models . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 3 Example: Island Biogeography . . . . . . . . . . . . . . . . . . . . . 6 1. 4 Classifications of Models . . . . . . . . . . . . . . . . . . . . . . . . 10 1. 5 Constraints on Model Structure . . . . . . . . . . . . . . . . . . . . . 12 1. 6 Some Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1. 7 Misuses of Models: The Dark Side . . . . . . . . . . . . . . . . . . . 13 1. 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 The Modeling Process 17 2. 1 Models Are Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. 2 Two Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . 18 2. 3 An Example: Population Doubling Time . . . . . . . . . . . . . . . . 24 2. 4 Model Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2. 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Qualitative Model Formulation 32 3. 1 How to Eat an Elephant . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. 2 Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3. 3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. 4 Errors in Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . 44 3. 5 Advantages and Disadvantages of Forrester Diagrams . . . . . . . . . 44 3. 6 Principles of Qualitative Formulation . . . . . . . . . . . . . . . . . . 45 3. 7 Model Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 8 Other Modeling Problems . . . . . . . . . . . . . . . . . . . . . . . . 49 viii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 9 Exercises 53 4 Quantitative Model Formulation: I 4. 1 From Qualitative to Quantitative . . . . . . . . . . . . . . . . . Finite Difference Equations and Differential Equations 4. 2 . . . . . . . . . . . . . . . . 4. 3 Biological Feedback in Quantitative Models . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 4 Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 5 Exercises 5 Quantitative Model Formulation: I1 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 1 Physical Processes 81 . . . . . . . . . . . . . . . 5. 2 Using the Toolbox of Biological Processes 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 3 Useful Functions 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 4 Examples 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 5 Exercises 104 6 Numerical Techniques 107 . . . . . . . . . . . . . . . . . . . . . . . 6. 1 Mistakes Computers Make 107 . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 2 Numerical Integration 110 . . . . . . . . . . . . . . . . 6. 3 Numerical Instability and Stiff Equations 115 . . . . . . . . . . . . . .
Publisher: Springer Science & Business Media
ISBN: 9780387250113
Category : Science
Languages : en
Pages : 500
Book Description
I Principles 1 1 Models of Systems 3 1. 1 Systems. Models. and Modeling . . . . . . . . . . . . . . . . . . . . 3 1. 2 Uses of Scientific Models . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 3 Example: Island Biogeography . . . . . . . . . . . . . . . . . . . . . 6 1. 4 Classifications of Models . . . . . . . . . . . . . . . . . . . . . . . . 10 1. 5 Constraints on Model Structure . . . . . . . . . . . . . . . . . . . . . 12 1. 6 Some Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1. 7 Misuses of Models: The Dark Side . . . . . . . . . . . . . . . . . . . 13 1. 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 The Modeling Process 17 2. 1 Models Are Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. 2 Two Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . 18 2. 3 An Example: Population Doubling Time . . . . . . . . . . . . . . . . 24 2. 4 Model Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2. 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Qualitative Model Formulation 32 3. 1 How to Eat an Elephant . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. 2 Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3. 3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. 4 Errors in Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . 44 3. 5 Advantages and Disadvantages of Forrester Diagrams . . . . . . . . . 44 3. 6 Principles of Qualitative Formulation . . . . . . . . . . . . . . . . . . 45 3. 7 Model Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 8 Other Modeling Problems . . . . . . . . . . . . . . . . . . . . . . . . 49 viii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 9 Exercises 53 4 Quantitative Model Formulation: I 4. 1 From Qualitative to Quantitative . . . . . . . . . . . . . . . . . Finite Difference Equations and Differential Equations 4. 2 . . . . . . . . . . . . . . . . 4. 3 Biological Feedback in Quantitative Models . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 4 Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 5 Exercises 5 Quantitative Model Formulation: I1 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 1 Physical Processes 81 . . . . . . . . . . . . . . . 5. 2 Using the Toolbox of Biological Processes 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 3 Useful Functions 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 4 Examples 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 5 Exercises 104 6 Numerical Techniques 107 . . . . . . . . . . . . . . . . . . . . . . . 6. 1 Mistakes Computers Make 107 . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 2 Numerical Integration 110 . . . . . . . . . . . . . . . . 6. 3 Numerical Instability and Stiff Equations 115 . . . . . . . . . . . . . .
A First Course in Systems Biology
Author: Eberhard Voit
Publisher: Garland Science
ISBN: 1351332945
Category : Computers
Languages : en
Pages : 481
Book Description
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.
Publisher: Garland Science
ISBN: 1351332945
Category : Computers
Languages : en
Pages : 481
Book Description
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.
Introduction to Modeling Biological Cellular Control Systems
Author: Weijiu Liu
Publisher: Springer Science & Business Media
ISBN: 8847024900
Category : Mathematics
Languages : en
Pages : 275
Book Description
This textbook contains the essential knowledge in modeling, simulation, analysis, and applications in dealing with biological cellular control systems. In particular, the book shows how to use the law of mass balance and the law of mass action to derive an enzyme kinetic model - the Michaelis-Menten function or the Hill function, how to use a current-voltage relation, Nernst potential equilibrium equation, and Hodgkin and Huxley's models to model an ionic channel or pump, and how to use the law of mass balance to integrate these enzyme or channel models into a complete feedback control system. The book also illustrates how to use data to estimate parameters in a model, how to use MATLAB to solve a model numerically, how to do computer simulations, and how to provide model predictions. Furthermore, the book demonstrates how to conduct a stability and sensitivity analysis on a model.
Publisher: Springer Science & Business Media
ISBN: 8847024900
Category : Mathematics
Languages : en
Pages : 275
Book Description
This textbook contains the essential knowledge in modeling, simulation, analysis, and applications in dealing with biological cellular control systems. In particular, the book shows how to use the law of mass balance and the law of mass action to derive an enzyme kinetic model - the Michaelis-Menten function or the Hill function, how to use a current-voltage relation, Nernst potential equilibrium equation, and Hodgkin and Huxley's models to model an ionic channel or pump, and how to use the law of mass balance to integrate these enzyme or channel models into a complete feedback control system. The book also illustrates how to use data to estimate parameters in a model, how to use MATLAB to solve a model numerically, how to do computer simulations, and how to provide model predictions. Furthermore, the book demonstrates how to conduct a stability and sensitivity analysis on a model.
A Guide to Numerical Modelling in Systems Biology
Author: Peter Deuflhard
Publisher: Springer
ISBN: 3319200593
Category : Mathematics
Languages : en
Pages : 185
Book Description
This book is intended for students of computational systems biology with only a limited background in mathematics. Typical books on systems biology merely mention algorithmic approaches, but without offering a deeper understanding. On the other hand, mathematical books are typically unreadable for computational biologists. The authors of the present book have worked hard to fill this gap. The result is not a book on systems biology, but on computational methods in systems biology. This book originated from courses taught by the authors at Freie Universität Berlin. The guiding idea of the courses was to convey those mathematical insights that are indispensable for systems biology, teaching the necessary mathematical prerequisites by means of many illustrative examples and without any theorems. The three chapters cover the mathematical modelling of biochemical and physiological processes, numerical simulation of the dynamics of biological networks and identification of model parameters by means of comparisons with real data. Throughout the text, the strengths and weaknesses of numerical algorithms with respect to various systems biological issues are discussed. Web addresses for downloading the corresponding software are also included.
Publisher: Springer
ISBN: 3319200593
Category : Mathematics
Languages : en
Pages : 185
Book Description
This book is intended for students of computational systems biology with only a limited background in mathematics. Typical books on systems biology merely mention algorithmic approaches, but without offering a deeper understanding. On the other hand, mathematical books are typically unreadable for computational biologists. The authors of the present book have worked hard to fill this gap. The result is not a book on systems biology, but on computational methods in systems biology. This book originated from courses taught by the authors at Freie Universität Berlin. The guiding idea of the courses was to convey those mathematical insights that are indispensable for systems biology, teaching the necessary mathematical prerequisites by means of many illustrative examples and without any theorems. The three chapters cover the mathematical modelling of biochemical and physiological processes, numerical simulation of the dynamics of biological networks and identification of model parameters by means of comparisons with real data. Throughout the text, the strengths and weaknesses of numerical algorithms with respect to various systems biological issues are discussed. Web addresses for downloading the corresponding software are also included.
Uncertainty in Biology
Author: Liesbet Geris
Publisher: Springer
ISBN: 3319212966
Category : Technology & Engineering
Languages : en
Pages : 471
Book Description
Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: 1. Modeling establishment under uncertainty 2. Model selection and parameter fitting 3. Sensitivity analysis and model adaptation 4. Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior.
Publisher: Springer
ISBN: 3319212966
Category : Technology & Engineering
Languages : en
Pages : 471
Book Description
Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: 1. Modeling establishment under uncertainty 2. Model selection and parameter fitting 3. Sensitivity analysis and model adaptation 4. Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior.
Parallel Metaheuristics
Author: Enrique Alba
Publisher: John Wiley & Sons
ISBN: 0471739375
Category : Technology & Engineering
Languages : en
Pages : 574
Book Description
Solving complex optimization problems with parallel metaheuristics Parallel Metaheuristics brings together an international group of experts in parallelism and metaheuristics to provide a much-needed synthesis of these two fields. Readers discover how metaheuristic techniques can provide useful and practical solutions for a wide range of problems and application domains, with an emphasis on the fields of telecommunications and bioinformatics. This volume fills a long-existing gap, allowing researchers and practitioners to develop efficient metaheuristic algorithms to find solutions. The book is divided into three parts: * Part One: Introduction to Metaheuristics and Parallelism, including an Introduction to Metaheuristic Techniques, Measuring the Performance of Parallel Metaheuristics, New Technologies in Parallelism, and a head-to-head discussion on Metaheuristics and Parallelism * Part Two: Parallel Metaheuristic Models, including Parallel Genetic Algorithms, Parallel Genetic Programming, Parallel Evolution Strategies, Parallel Ant Colony Algorithms, Parallel Estimation of Distribution Algorithms, Parallel Scatter Search, Parallel Variable Neighborhood Search, Parallel Simulated Annealing, Parallel Tabu Search, Parallel GRASP, Parallel Hybrid Metaheuristics, Parallel Multi-Objective Optimization, and Parallel Heterogeneous Metaheuristics * Part Three: Theory and Applications, including Theory of Parallel Genetic Algorithms, Parallel Metaheuristics Applications, Parallel Metaheuristics in Telecommunications, and a final chapter on Bioinformatics and Parallel Metaheuristics Each self-contained chapter begins with clear overviews and introductions that bring the reader up to speed, describes basic techniques, and ends with a reference list for further study. Packed with numerous tables and figures to illustrate the complex theory and processes, this comprehensive volume also includes numerous practical real-world optimization problems and their solutions. This is essential reading for students and researchers in computer science, mathematics, and engineering who deal with parallelism, metaheuristics, and optimization in general.
Publisher: John Wiley & Sons
ISBN: 0471739375
Category : Technology & Engineering
Languages : en
Pages : 574
Book Description
Solving complex optimization problems with parallel metaheuristics Parallel Metaheuristics brings together an international group of experts in parallelism and metaheuristics to provide a much-needed synthesis of these two fields. Readers discover how metaheuristic techniques can provide useful and practical solutions for a wide range of problems and application domains, with an emphasis on the fields of telecommunications and bioinformatics. This volume fills a long-existing gap, allowing researchers and practitioners to develop efficient metaheuristic algorithms to find solutions. The book is divided into three parts: * Part One: Introduction to Metaheuristics and Parallelism, including an Introduction to Metaheuristic Techniques, Measuring the Performance of Parallel Metaheuristics, New Technologies in Parallelism, and a head-to-head discussion on Metaheuristics and Parallelism * Part Two: Parallel Metaheuristic Models, including Parallel Genetic Algorithms, Parallel Genetic Programming, Parallel Evolution Strategies, Parallel Ant Colony Algorithms, Parallel Estimation of Distribution Algorithms, Parallel Scatter Search, Parallel Variable Neighborhood Search, Parallel Simulated Annealing, Parallel Tabu Search, Parallel GRASP, Parallel Hybrid Metaheuristics, Parallel Multi-Objective Optimization, and Parallel Heterogeneous Metaheuristics * Part Three: Theory and Applications, including Theory of Parallel Genetic Algorithms, Parallel Metaheuristics Applications, Parallel Metaheuristics in Telecommunications, and a final chapter on Bioinformatics and Parallel Metaheuristics Each self-contained chapter begins with clear overviews and introductions that bring the reader up to speed, describes basic techniques, and ends with a reference list for further study. Packed with numerous tables and figures to illustrate the complex theory and processes, this comprehensive volume also includes numerous practical real-world optimization problems and their solutions. This is essential reading for students and researchers in computer science, mathematics, and engineering who deal with parallelism, metaheuristics, and optimization in general.
Inverse Problem Theory and Methods for Model Parameter Estimation
Author: Albert Tarantola
Publisher: SIAM
ISBN: 9780898717921
Category : Mathematics
Languages : en
Pages : 349
Book Description
While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.
Publisher: SIAM
ISBN: 9780898717921
Category : Mathematics
Languages : en
Pages : 349
Book Description
While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.