Author: Karl-Rudolf Koch
Publisher: Springer Science & Business Media
ISBN: 3662039761
Category : Mathematics
Languages : en
Pages : 344
Book Description
A treatment of estimating unknown parameters, testing hypotheses and estimating confidence intervals in linear models. Readers will find here presentations of the Gauss-Markoff model, the analysis of variance, the multivariate model, the model with unknown variance and covariance components and the regression model as well as the mixed model for estimating random parameters. A chapter on the robust estimation of parameters and several examples have been added to this second edition. The necessary theorems of vector and matrix algebra and the probability distributions of test statistics are derived so as to make this book self-contained. Geodesy students as well as those in the natural sciences and engineering will find the emphasis on the geodetic application of statistical models extremely useful.
Parameter Estimation and Hypothesis Testing in Linear Models
Author: Karl-Rudolf Koch
Publisher: Springer Science & Business Media
ISBN: 3662039761
Category : Mathematics
Languages : en
Pages : 344
Book Description
A treatment of estimating unknown parameters, testing hypotheses and estimating confidence intervals in linear models. Readers will find here presentations of the Gauss-Markoff model, the analysis of variance, the multivariate model, the model with unknown variance and covariance components and the regression model as well as the mixed model for estimating random parameters. A chapter on the robust estimation of parameters and several examples have been added to this second edition. The necessary theorems of vector and matrix algebra and the probability distributions of test statistics are derived so as to make this book self-contained. Geodesy students as well as those in the natural sciences and engineering will find the emphasis on the geodetic application of statistical models extremely useful.
Publisher: Springer Science & Business Media
ISBN: 3662039761
Category : Mathematics
Languages : en
Pages : 344
Book Description
A treatment of estimating unknown parameters, testing hypotheses and estimating confidence intervals in linear models. Readers will find here presentations of the Gauss-Markoff model, the analysis of variance, the multivariate model, the model with unknown variance and covariance components and the regression model as well as the mixed model for estimating random parameters. A chapter on the robust estimation of parameters and several examples have been added to this second edition. The necessary theorems of vector and matrix algebra and the probability distributions of test statistics are derived so as to make this book self-contained. Geodesy students as well as those in the natural sciences and engineering will find the emphasis on the geodetic application of statistical models extremely useful.
Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series
Author: K. Dzhaparidze
Publisher: Springer Science & Business Media
ISBN: 9780387961415
Category : Mathematics
Languages : en
Pages : 346
Book Description
. . ) (under the assumption that the spectral density exists). For this reason, a vast amount of periodical and monographic literature is devoted to the nonparametric statistical problem of estimating the function tJ( T) and especially that of leA) (see, for example, the books [4,21,22,26,56,77,137,139,140,]). However, the empirical value t;; of the spectral density I obtained by applying a certain statistical procedure to the observed values of the variables Xl' . . . , X , usually depends in n a complicated manner on the cyclic frequency). . This fact often presents difficulties in applying the obtained estimate t;; of the function I to the solution of specific problems rela ted to the process X . Theref ore, in practice, the t obtained values of the estimator t;; (or an estimator of the covariance function tJ~( T» are almost always "smoothed," i. e. , are approximated by values of a certain sufficiently simple function 1 = 1
Publisher: Springer Science & Business Media
ISBN: 9780387961415
Category : Mathematics
Languages : en
Pages : 346
Book Description
. . ) (under the assumption that the spectral density exists). For this reason, a vast amount of periodical and monographic literature is devoted to the nonparametric statistical problem of estimating the function tJ( T) and especially that of leA) (see, for example, the books [4,21,22,26,56,77,137,139,140,]). However, the empirical value t;; of the spectral density I obtained by applying a certain statistical procedure to the observed values of the variables Xl' . . . , X , usually depends in n a complicated manner on the cyclic frequency). . This fact often presents difficulties in applying the obtained estimate t;; of the function I to the solution of specific problems rela ted to the process X . Theref ore, in practice, the t obtained values of the estimator t;; (or an estimator of the covariance function tJ~( T» are almost always "smoothed," i. e. , are approximated by values of a certain sufficiently simple function 1 = 1
Using R for Principles of Econometrics
Author: Constantin Colonescu
Publisher: Lulu.com
ISBN: 1387473611
Category : Business & Economics
Languages : en
Pages : 278
Book Description
This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.
Publisher: Lulu.com
ISBN: 1387473611
Category : Business & Economics
Languages : en
Pages : 278
Book Description
This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.
Linear Models in Statistics
Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690
Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690
Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Introductory Business Statistics 2e
Author: Alexander Holmes
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 1801
Book Description
Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 1801
Book Description
Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Linear Models with Python
Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 135105340X
Category : Business & Economics
Languages : en
Pages : 309
Book Description
Praise for Linear Models with R: This book is a must-have tool for anyone interested in understanding and applying linear models. The logical ordering of the chapters is well thought out and portrays Faraway’s wealth of experience in teaching and using linear models. ... It lays down the material in a logical and intricate manner and makes linear modeling appealing to researchers from virtually all fields of study. -Biometrical Journal Throughout, it gives plenty of insight ... with comments that even the seasoned practitioner will appreciate. Interspersed with R code and the output that it produces one can find many little gems of what I think is sound statistical advice, well epitomized with the examples chosen...I read it with delight and think that the same will be true with anyone who is engaged in the use or teaching of linear models. -Journal of the Royal Statistical Society Like its widely praised, best-selling companion version, Linear Models with R, this book replaces R with Python to seamlessly give a coherent exposition of the practice of linear modeling. Linear Models with Python offers up-to-date insight on essential data analysis topics, from estimation, inference and prediction to missing data, factorial models and block designs. Numerous examples illustrate how to apply the different methods using Python. Features: Python is a powerful, open source programming language increasingly being used in data science, machine learning and computer science. Python and R are similar, but R was designed for statistics, while Python is multi-talented. This version replaces R with Python to make it accessible to a greater number of users outside of statistics, including those from Machine Learning. A reader coming to this book from an ML background will learn new statistical perspectives on learning from data. Topics include Model Selection, Shrinkage, Experiments with Blocks and Missing Data. Includes an Appendix on Python for beginners. Linear Models with Python explains how to use linear models in physical science, engineering, social science and business applications. It is ideal as a textbook for linear models or linear regression courses.
Publisher: CRC Press
ISBN: 135105340X
Category : Business & Economics
Languages : en
Pages : 309
Book Description
Praise for Linear Models with R: This book is a must-have tool for anyone interested in understanding and applying linear models. The logical ordering of the chapters is well thought out and portrays Faraway’s wealth of experience in teaching and using linear models. ... It lays down the material in a logical and intricate manner and makes linear modeling appealing to researchers from virtually all fields of study. -Biometrical Journal Throughout, it gives plenty of insight ... with comments that even the seasoned practitioner will appreciate. Interspersed with R code and the output that it produces one can find many little gems of what I think is sound statistical advice, well epitomized with the examples chosen...I read it with delight and think that the same will be true with anyone who is engaged in the use or teaching of linear models. -Journal of the Royal Statistical Society Like its widely praised, best-selling companion version, Linear Models with R, this book replaces R with Python to seamlessly give a coherent exposition of the practice of linear modeling. Linear Models with Python offers up-to-date insight on essential data analysis topics, from estimation, inference and prediction to missing data, factorial models and block designs. Numerous examples illustrate how to apply the different methods using Python. Features: Python is a powerful, open source programming language increasingly being used in data science, machine learning and computer science. Python and R are similar, but R was designed for statistics, while Python is multi-talented. This version replaces R with Python to make it accessible to a greater number of users outside of statistics, including those from Machine Learning. A reader coming to this book from an ML background will learn new statistical perspectives on learning from data. Topics include Model Selection, Shrinkage, Experiments with Blocks and Missing Data. Includes an Appendix on Python for beginners. Linear Models with Python explains how to use linear models in physical science, engineering, social science and business applications. It is ideal as a textbook for linear models or linear regression courses.
Advanced Linear Models
Author: Shein-Chung Chow
Publisher: Routledge
ISBN: 1351468561
Category : Mathematics
Languages : en
Pages : 556
Book Description
This work details the statistical inference of linear models including parameter estimation, hypothesis testing, confidence intervals, and prediction. The authors discuss the application of statistical theories and methodologies to various linear models such as the linear regression model, the analysis of variance model, the analysis of covariance model, and the variance components model.
Publisher: Routledge
ISBN: 1351468561
Category : Mathematics
Languages : en
Pages : 556
Book Description
This work details the statistical inference of linear models including parameter estimation, hypothesis testing, confidence intervals, and prediction. The authors discuss the application of statistical theories and methodologies to various linear models such as the linear regression model, the analysis of variance model, the analysis of covariance model, and the variance components model.
Bayesian Statistics the Fun Way
Author: Will Kurt
Publisher: No Starch Press
ISBN: 1593279566
Category : Mathematics
Languages : en
Pages : 258
Book Description
Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.
Publisher: No Starch Press
ISBN: 1593279566
Category : Mathematics
Languages : en
Pages : 258
Book Description
Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.
Simultaneous Inference in Regression
Author: Wei Liu
Publisher: CRC Press
ISBN: 1439828105
Category : Mathematics
Languages : en
Pages : 292
Book Description
Simultaneous confidence bands enable more intuitive and detailed inference of regression analysis than the standard inferential methods of parameter estimation and hypothesis testing. Simultaneous Inference in Regression provides a thorough overview of the construction methods and applications of simultaneous confidence bands for various inferentia
Publisher: CRC Press
ISBN: 1439828105
Category : Mathematics
Languages : en
Pages : 292
Book Description
Simultaneous confidence bands enable more intuitive and detailed inference of regression analysis than the standard inferential methods of parameter estimation and hypothesis testing. Simultaneous Inference in Regression provides a thorough overview of the construction methods and applications of simultaneous confidence bands for various inferentia
Methods and Applications of Linear Models
Author: Ronald R. Hocking
Publisher: John Wiley & Sons
ISBN: 1118593022
Category : Mathematics
Languages : en
Pages : 724
Book Description
Praise for the Second Edition "An essential desktop reference book . . . it should definitely be on your bookshelf." —Technometrics A thoroughly updated book, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition features innovative approaches to understanding and working with models and theory of linear regression. The Third Edition provides readers with the necessary theoretical concepts, which are presented using intuitive ideas rather than complicated proofs, to describe the inference that is appropriate for the methods being discussed. The book presents a unique discussion that combines coverage of mathematical theory of linear models with analysis of variance models, providing readers with a comprehensive understanding of both the theoretical and technical aspects of linear models. With a new focus on fixed effects models, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition also features: Newly added topics including least squares, the cell means model, and graphical inspection of data in the AVE method Frequent conceptual and numerical examples for clarifying the statistical analyses and demonstrating potential pitfalls Graphics and computations developed using JMP® software to accompany the concepts and techniques presented Numerous exercises presented to test readers and deepen their understanding of the material An ideal book for courses on linear models and linear regression at the undergraduate and graduate levels, the Third Edition of Methods and Applications of Linear Models: Regression and the Analysis of Variance is also a valuable reference for applied statisticians and researchers who utilize linear model methodology.
Publisher: John Wiley & Sons
ISBN: 1118593022
Category : Mathematics
Languages : en
Pages : 724
Book Description
Praise for the Second Edition "An essential desktop reference book . . . it should definitely be on your bookshelf." —Technometrics A thoroughly updated book, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition features innovative approaches to understanding and working with models and theory of linear regression. The Third Edition provides readers with the necessary theoretical concepts, which are presented using intuitive ideas rather than complicated proofs, to describe the inference that is appropriate for the methods being discussed. The book presents a unique discussion that combines coverage of mathematical theory of linear models with analysis of variance models, providing readers with a comprehensive understanding of both the theoretical and technical aspects of linear models. With a new focus on fixed effects models, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition also features: Newly added topics including least squares, the cell means model, and graphical inspection of data in the AVE method Frequent conceptual and numerical examples for clarifying the statistical analyses and demonstrating potential pitfalls Graphics and computations developed using JMP® software to accompany the concepts and techniques presented Numerous exercises presented to test readers and deepen their understanding of the material An ideal book for courses on linear models and linear regression at the undergraduate and graduate levels, the Third Edition of Methods and Applications of Linear Models: Regression and the Analysis of Variance is also a valuable reference for applied statisticians and researchers who utilize linear model methodology.