Author: Seyed H Roosta
Publisher: Springer Science & Business Media
ISBN: 1461212200
Category : Computers
Languages : en
Pages : 579
Book Description
Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.
Parallel Processing and Parallel Algorithms
Author: Seyed H Roosta
Publisher: Springer Science & Business Media
ISBN: 1461212200
Category : Computers
Languages : en
Pages : 579
Book Description
Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.
Publisher: Springer Science & Business Media
ISBN: 1461212200
Category : Computers
Languages : en
Pages : 579
Book Description
Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.
Algorithms and Parallel Computing
Author: Fayez Gebali
Publisher: John Wiley & Sons
ISBN: 0470934638
Category : Computers
Languages : en
Pages : 372
Book Description
There is a software gap between the hardware potential and the performance that can be attained using today's software parallel program development tools. The tools need manual intervention by the programmer to parallelize the code. Programming a parallel computer requires closely studying the target algorithm or application, more so than in the traditional sequential programming we have all learned. The programmer must be aware of the communication and data dependencies of the algorithm or application. This book provides the techniques to explore the possible ways to program a parallel computer for a given application.
Publisher: John Wiley & Sons
ISBN: 0470934638
Category : Computers
Languages : en
Pages : 372
Book Description
There is a software gap between the hardware potential and the performance that can be attained using today's software parallel program development tools. The tools need manual intervention by the programmer to parallelize the code. Programming a parallel computer requires closely studying the target algorithm or application, more so than in the traditional sequential programming we have all learned. The programmer must be aware of the communication and data dependencies of the algorithm or application. This book provides the techniques to explore the possible ways to program a parallel computer for a given application.
Introduction to Parallel Algorithms and Architectures
Author: Frank Thomson Leighton
Publisher: Morgan Kaufmann Publishers
ISBN:
Category : Computers
Languages : en
Pages : 870
Book Description
Mathematics of Computing -- Parallelism.
Publisher: Morgan Kaufmann Publishers
ISBN:
Category : Computers
Languages : en
Pages : 870
Book Description
Mathematics of Computing -- Parallelism.
Introduction to Parallel Processing
Author: Behrooz Parhami
Publisher: Springer Science & Business Media
ISBN: 0306469642
Category : Business & Economics
Languages : en
Pages : 512
Book Description
THE CONTEXT OF PARALLEL PROCESSING The field of digital computer architecture has grown explosively in the past two decades. Through a steady stream of experimental research, tool-building efforts, and theoretical studies, the design of an instruction-set architecture, once considered an art, has been transformed into one of the most quantitative branches of computer technology. At the same time, better understanding of various forms of concurrency, from standard pipelining to massive parallelism, and invention of architectural structures to support a reasonably efficient and user-friendly programming model for such systems, has allowed hardware performance to continue its exponential growth. This trend is expected to continue in the near future. This explosive growth, linked with the expectation that performance will continue its exponential rise with each new generation of hardware and that (in stark contrast to software) computer hardware will function correctly as soon as it comes off the assembly line, has its down side. It has led to unprecedented hardware complexity and almost intolerable dev- opment costs. The challenge facing current and future computer designers is to institute simplicity where we now have complexity; to use fundamental theories being developed in this area to gain performance and ease-of-use benefits from simpler circuits; to understand the interplay between technological capabilities and limitations, on the one hand, and design decisions based on user and application requirements on the other.
Publisher: Springer Science & Business Media
ISBN: 0306469642
Category : Business & Economics
Languages : en
Pages : 512
Book Description
THE CONTEXT OF PARALLEL PROCESSING The field of digital computer architecture has grown explosively in the past two decades. Through a steady stream of experimental research, tool-building efforts, and theoretical studies, the design of an instruction-set architecture, once considered an art, has been transformed into one of the most quantitative branches of computer technology. At the same time, better understanding of various forms of concurrency, from standard pipelining to massive parallelism, and invention of architectural structures to support a reasonably efficient and user-friendly programming model for such systems, has allowed hardware performance to continue its exponential growth. This trend is expected to continue in the near future. This explosive growth, linked with the expectation that performance will continue its exponential rise with each new generation of hardware and that (in stark contrast to software) computer hardware will function correctly as soon as it comes off the assembly line, has its down side. It has led to unprecedented hardware complexity and almost intolerable dev- opment costs. The challenge facing current and future computer designers is to institute simplicity where we now have complexity; to use fundamental theories being developed in this area to gain performance and ease-of-use benefits from simpler circuits; to understand the interplay between technological capabilities and limitations, on the one hand, and design decisions based on user and application requirements on the other.
Parallel Scientific Computing in C++ and MPI
Author: George Em Karniadakis
Publisher: Cambridge University Press
ISBN: 110749477X
Category : Computers
Languages : en
Pages : 640
Book Description
Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.
Publisher: Cambridge University Press
ISBN: 110749477X
Category : Computers
Languages : en
Pages : 640
Book Description
Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.
Parallel Processing for Scientific Computing
Author: Michael A. Heroux
Publisher: SIAM
ISBN: 9780898718133
Category : Computers
Languages : en
Pages : 421
Book Description
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.
Publisher: SIAM
ISBN: 9780898718133
Category : Computers
Languages : en
Pages : 421
Book Description
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.
Parallel Algorithms for Regular Architectures
Author: Russ Miller
Publisher: MIT Press
ISBN: 9780262132336
Category : Architecture
Languages : en
Pages : 336
Book Description
Parallel-Algorithms for Regular Architectures is the first book to concentrate exclusively on algorithms and paradigms for programming parallel computers such as the hypercube, mesh, pyramid, and mesh-of-trees.
Publisher: MIT Press
ISBN: 9780262132336
Category : Architecture
Languages : en
Pages : 336
Book Description
Parallel-Algorithms for Regular Architectures is the first book to concentrate exclusively on algorithms and paradigms for programming parallel computers such as the hypercube, mesh, pyramid, and mesh-of-trees.
Sequential and Parallel Algorithms and Data Structures
Author: Peter Sanders
Publisher: Springer Nature
ISBN: 3030252094
Category : Computers
Languages : en
Pages : 516
Book Description
This textbook is a concise introduction to the basic toolbox of structures that allow efficient organization and retrieval of data, key algorithms for problems on graphs, and generic techniques for modeling, understanding, and solving algorithmic problems. The authors aim for a balance between simplicity and efficiency, between theory and practice, and between classical results and the forefront of research. Individual chapters cover arrays and linked lists, hash tables and associative arrays, sorting and selection, priority queues, sorted sequences, graph representation, graph traversal, shortest paths, minimum spanning trees, optimization, collective communication and computation, and load balancing. The authors also discuss important issues such as algorithm engineering, memory hierarchies, algorithm libraries, and certifying algorithms. Moving beyond the sequential algorithms and data structures of the earlier related title, this book takes into account the paradigm shift towards the parallel processing required to solve modern performance-critical applications and how this impacts on the teaching of algorithms. The book is suitable for undergraduate and graduate students and professionals familiar with programming and basic mathematical language. Most chapters have the same basic structure: the authors discuss a problem as it occurs in a real-life situation, they illustrate the most important applications, and then they introduce simple solutions as informally as possible and as formally as necessary so the reader really understands the issues at hand. As they move to more advanced and optional issues, their approach gradually leads to a more mathematical treatment, including theorems and proofs. The book includes many examples, pictures, informal explanations, and exercises, and the implementation notes introduce clean, efficient implementations in languages such as C++ and Java.
Publisher: Springer Nature
ISBN: 3030252094
Category : Computers
Languages : en
Pages : 516
Book Description
This textbook is a concise introduction to the basic toolbox of structures that allow efficient organization and retrieval of data, key algorithms for problems on graphs, and generic techniques for modeling, understanding, and solving algorithmic problems. The authors aim for a balance between simplicity and efficiency, between theory and practice, and between classical results and the forefront of research. Individual chapters cover arrays and linked lists, hash tables and associative arrays, sorting and selection, priority queues, sorted sequences, graph representation, graph traversal, shortest paths, minimum spanning trees, optimization, collective communication and computation, and load balancing. The authors also discuss important issues such as algorithm engineering, memory hierarchies, algorithm libraries, and certifying algorithms. Moving beyond the sequential algorithms and data structures of the earlier related title, this book takes into account the paradigm shift towards the parallel processing required to solve modern performance-critical applications and how this impacts on the teaching of algorithms. The book is suitable for undergraduate and graduate students and professionals familiar with programming and basic mathematical language. Most chapters have the same basic structure: the authors discuss a problem as it occurs in a real-life situation, they illustrate the most important applications, and then they introduce simple solutions as informally as possible and as formally as necessary so the reader really understands the issues at hand. As they move to more advanced and optional issues, their approach gradually leads to a more mathematical treatment, including theorems and proofs. The book includes many examples, pictures, informal explanations, and exercises, and the implementation notes introduce clean, efficient implementations in languages such as C++ and Java.
The Characteristics of Parallel Algorithms
Author: Leah H. Jamieson
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 464
Book Description
Mathematics of Computing -- Parallelism.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 464
Book Description
Mathematics of Computing -- Parallelism.
Introduction to Parallel Computing
Author: Roman Trobec
Publisher: Springer
ISBN: 3319988336
Category : Computers
Languages : en
Pages : 263
Book Description
Advancements in microprocessor architecture, interconnection technology, and software development have fueled rapid growth in parallel and distributed computing. However, this development is only of practical benefit if it is accompanied by progress in the design, analysis and programming of parallel algorithms. This concise textbook provides, in one place, three mainstream parallelization approaches, Open MPP, MPI and OpenCL, for multicore computers, interconnected computers and graphical processing units. An overview of practical parallel computing and principles will enable the reader to design efficient parallel programs for solving various computational problems on state-of-the-art personal computers and computing clusters. Topics covered range from parallel algorithms, programming tools, OpenMP, MPI and OpenCL, followed by experimental measurements of parallel programs’ run-times, and by engineering analysis of obtained results for improved parallel execution performances. Many examples and exercises support the exposition.
Publisher: Springer
ISBN: 3319988336
Category : Computers
Languages : en
Pages : 263
Book Description
Advancements in microprocessor architecture, interconnection technology, and software development have fueled rapid growth in parallel and distributed computing. However, this development is only of practical benefit if it is accompanied by progress in the design, analysis and programming of parallel algorithms. This concise textbook provides, in one place, three mainstream parallelization approaches, Open MPP, MPI and OpenCL, for multicore computers, interconnected computers and graphical processing units. An overview of practical parallel computing and principles will enable the reader to design efficient parallel programs for solving various computational problems on state-of-the-art personal computers and computing clusters. Topics covered range from parallel algorithms, programming tools, OpenMP, MPI and OpenCL, followed by experimental measurements of parallel programs’ run-times, and by engineering analysis of obtained results for improved parallel execution performances. Many examples and exercises support the exposition.