Parallel Computing Works!

Parallel Computing Works! PDF Author: Geoffrey C. Fox
Publisher: Elsevier
ISBN: 0080513514
Category : Computers
Languages : en
Pages : 977

Get Book

Book Description
A clear illustration of how parallel computers can be successfully applied to large-scale scientific computations. This book demonstrates how a variety of applications in physics, biology, mathematics and other sciences were implemented on real parallel computers to produce new scientific results. It investigates issues of fine-grained parallelism relevant for future supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configure different massively parallel machines, design and implement basic system software, and develop algorithms for frequently used mathematical computations. They also devise performance models, measure the performance characteristics of several computers, and create a high-performance computing facility based exclusively on parallel computers. By addressing all issues involved in scientific problem solving, Parallel Computing Works! provides valuable insight into computational science for large-scale parallel architectures. For those in the sciences, the findings reveal the usefulness of an important experimental tool. Anyone in supercomputing and related computational fields will gain a new perspective on the potential contributions of parallelism. Includes over 30 full-color illustrations.

Parallel Computing Works!

Parallel Computing Works! PDF Author: Geoffrey C. Fox
Publisher: Elsevier
ISBN: 0080513514
Category : Computers
Languages : en
Pages : 977

Get Book

Book Description
A clear illustration of how parallel computers can be successfully applied to large-scale scientific computations. This book demonstrates how a variety of applications in physics, biology, mathematics and other sciences were implemented on real parallel computers to produce new scientific results. It investigates issues of fine-grained parallelism relevant for future supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configure different massively parallel machines, design and implement basic system software, and develop algorithms for frequently used mathematical computations. They also devise performance models, measure the performance characteristics of several computers, and create a high-performance computing facility based exclusively on parallel computers. By addressing all issues involved in scientific problem solving, Parallel Computing Works! provides valuable insight into computational science for large-scale parallel architectures. For those in the sciences, the findings reveal the usefulness of an important experimental tool. Anyone in supercomputing and related computational fields will gain a new perspective on the potential contributions of parallelism. Includes over 30 full-color illustrations.

Parallel and High Performance Computing

Parallel and High Performance Computing PDF Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702

Get Book

Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

Parallel Computing is Everywhere

Parallel Computing is Everywhere PDF Author: S. Bassini
Publisher: IOS Press
ISBN: 1614998434
Category : Computers
Languages : en
Pages : 852

Get Book

Book Description
The most powerful computers work by harnessing the combined computational power of millions of processors, and exploiting the full potential of such large-scale systems is something which becomes more difficult with each succeeding generation of parallel computers. Alternative architectures and computer paradigms are increasingly being investigated in an attempt to address these difficulties. Added to this, the pervasive presence of heterogeneous and parallel devices in consumer products such as mobile phones, tablets, personal computers and servers also demands efficient programming environments and applications aimed at small-scale parallel systems as opposed to large-scale supercomputers. This book presents a selection of papers presented at the conference: Parallel Computing (ParCo2017), held in Bologna, Italy, on 12 to 15 September 2017. The conference included contributions about alternative approaches to achieving High Performance Computing (HPC) to potentially surpass exa- and zetascale performances, as well as papers on the application of quantum computers and FPGA processors. These developments are aimed at making available systems better capable of solving intensive computational scientific/engineering problems such as climate models, security applications and classic NP-problems, some of which cannot currently be managed by even the most powerful supercomputers available. New areas of application, such as robotics, AI and learning systems, data science, the Internet of Things (IoT), and in-car systems and autonomous vehicles were also covered. As always, ParCo2017 attracted a large number of notable contributions covering present and future developments in parallel computing, and the book will be of interest to all those working in the field.

Parallel Computing

Parallel Computing PDF Author: Roman Trobec
Publisher: Springer Science & Business Media
ISBN: 1848824092
Category : Computers
Languages : en
Pages : 531

Get Book

Book Description
The use of parallel programming and architectures is essential for simulating and solving problems in modern computational practice. There has been rapid progress in microprocessor architecture, interconnection technology and software devel- ment, which are in?uencing directly the rapid growth of parallel and distributed computing. However, in order to make these bene?ts usable in practice, this dev- opment must be accompanied by progress in the design, analysis and application aspects of parallel algorithms. In particular, new approaches from parallel num- ics are important for solving complex computational problems on parallel and/or distributed systems. The contributions to this book are focused on topics most concerned in the trends of today’s parallel computing. These range from parallel algorithmics, progr- ming, tools, network computing to future parallel computing. Particular attention is paid to parallel numerics: linear algebra, differential equations, numerical integ- tion, number theory and their applications in computer simulations, which together form the kernel of the monograph. We expect that the book will be of interest to scientists working on parallel computing, doctoral students, teachers, engineers and mathematicians dealing with numerical applications and computer simulations of natural phenomena.

Parallel Programming: Techniques And Applications Using Networked Workstations And Parallel Computers, 2/E

Parallel Programming: Techniques And Applications Using Networked Workstations And Parallel Computers, 2/E PDF Author: Philip Wilkinson
Publisher: Pearson Education India
ISBN: 9788131702390
Category :
Languages : en
Pages : 492

Get Book

Book Description


Handbook of Parallel Computing

Handbook of Parallel Computing PDF Author: Sanguthevar Rajasekaran
Publisher: CRC Press
ISBN: 1420011294
Category : Computers
Languages : en
Pages : 1224

Get Book

Book Description
The ability of parallel computing to process large data sets and handle time-consuming operations has resulted in unprecedented advances in biological and scientific computing, modeling, and simulations. Exploring these recent developments, the Handbook of Parallel Computing: Models, Algorithms, and Applications provides comprehensive coverage on a

Parallel Processing for Scientific Computing

Parallel Processing for Scientific Computing PDF Author: Michael A. Heroux
Publisher: SIAM
ISBN: 9780898718133
Category : Computers
Languages : en
Pages : 421

Get Book

Book Description
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.

Programming Models for Parallel Computing

Programming Models for Parallel Computing PDF Author: Pavan Balaji
Publisher: MIT Press
ISBN: 0262528819
Category : Computers
Languages : en
Pages : 488

Get Book

Book Description
An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng

Advances in Parallel Computing Technologies and Applications

Advances in Parallel Computing Technologies and Applications PDF Author: D.J. Hemanth
Publisher: IOS Press
ISBN: 1643682199
Category : Computers
Languages : en
Pages : 450

Get Book

Book Description
Recent developments in parallel computing mean that the use of machine learning techniques and intelligence to handle the huge volume of available data have brought the faster solutions offered by advanced technologies to various fields of application. This book presents the proceedings of the Virtual International Conference on Advances in Parallel Computing Technologies and Applications (ICAPTA 2021), hosted in Justice Basheer Ahmed Sayeed College for women (formerly "S.I.E.T Women's College"), Chennai, India, and held online as a virtual event on 15 and 16 April 2021. The aim of the conference was to provide a forum for sharing knowledge in various aspects of parallel computing in communications systems and networking, including cloud and virtualization solutions, management technologies, and vertical application areas. It also provided a platform for scientists, researchers, practitioners and academicians to present and discuss the most recent innovations and trends, as well as the concerns and practical challenges encountered in this field. Included here are 52 full length papers, selected from over 100 submissions based on the reviews and comments of subject experts. Topics covered include parallel computing in communication, machine learning intelligence for parallel computing and parallel computing for software services in theoretical and practical aspects. Providing an overview of the latest developments in the field, the book will be of interest to all those whose work involves the use of parallel computing technologies.

Programming Massively Parallel Processors

Programming Massively Parallel Processors PDF Author: David B. Kirk
Publisher: Newnes
ISBN: 0123914183
Category : Computers
Languages : en
Pages : 514

Get Book

Book Description
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing