Author:
Publisher: American Mathematical Soc.
ISBN: 0821852345
Category :
Languages : en
Pages : 250
Book Description
Papers on Topology
Author:
Publisher: American Mathematical Soc.
ISBN: 0821852345
Category :
Languages : en
Pages : 250
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821852345
Category :
Languages : en
Pages : 250
Book Description
Experiments in Topology
Author: Stephen Barr
Publisher: Courier Corporation
ISBN: 048615274X
Category : Mathematics
Languages : en
Pages : 244
Book Description
Classic, lively explanation of one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map coloring, problem of the Koenigsberg bridges, much more, described with clarity and wit.
Publisher: Courier Corporation
ISBN: 048615274X
Category : Mathematics
Languages : en
Pages : 244
Book Description
Classic, lively explanation of one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map coloring, problem of the Koenigsberg bridges, much more, described with clarity and wit.
Algebraic Topology and Related Topics
Author: Mahender Singh
Publisher: Springer
ISBN: 9811357420
Category : Mathematics
Languages : en
Pages : 318
Book Description
This book highlights the latest advances in algebraic topology, from homotopy theory, braid groups, configuration spaces and toric topology, to transformation groups and the adjoining area of knot theory. It consists of well-written original research papers and survey articles by subject experts, most of which were presented at the “7th East Asian Conference on Algebraic Topology” held at the Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India, from December 1 to 6, 2017. Algebraic topology is a broad area of mathematics that has seen enormous developments over the past decade, and as such this book is a valuable resource for graduate students and researchers working in the field.
Publisher: Springer
ISBN: 9811357420
Category : Mathematics
Languages : en
Pages : 318
Book Description
This book highlights the latest advances in algebraic topology, from homotopy theory, braid groups, configuration spaces and toric topology, to transformation groups and the adjoining area of knot theory. It consists of well-written original research papers and survey articles by subject experts, most of which were presented at the “7th East Asian Conference on Algebraic Topology” held at the Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India, from December 1 to 6, 2017. Algebraic topology is a broad area of mathematics that has seen enormous developments over the past decade, and as such this book is a valuable resource for graduate students and researchers working in the field.
Papers on Group Theory and Topology
Author: Max Dehn
Publisher: Springer Science & Business Media
ISBN: 1461246687
Category : Mathematics
Languages : en
Pages : 404
Book Description
The work of Max Dehn (1878-1952) has been quietly influential in mathematics since the beginning of the 20th century. In 1900 he became the first to solve one of the famous Hilbert problems (the third, on the decomposition of polyhedra), in 1907 he collaborated with Heegaard to produce the first survey of topology, and in 1910 he began publishing his own investigations in topology and combinatorial group theory. His influence is apparent in the terms Dehn's algorithm, Dehn's lemma and Dehn surgery (and Dehnsche Gruppenbilder, generally known in English as Cayley diagrams), but direct access to his work has been difficult. No edition of his works has been produced, and some of his most important results were never published, at least not by him. The present volume is a modest attempt to bring Dehn's work to a wider audience, particularly topologists and group theorists curious about the origins of their subject and interested in mining the sources for new ideas. It consists of English translations of eight works : five of Dehn's major papers in topology and combinatorial group theory, and three unpublished works which illuminate the published papers and contain some results not available elsewhere. In addition, I have written a short introduction to each work, summarising its contents and trying to establish its place among related works of Dehn and others, and I have added an appendix on the Dehn-Nielsen theorem (often known simply as Nielsen's theorem) .
Publisher: Springer Science & Business Media
ISBN: 1461246687
Category : Mathematics
Languages : en
Pages : 404
Book Description
The work of Max Dehn (1878-1952) has been quietly influential in mathematics since the beginning of the 20th century. In 1900 he became the first to solve one of the famous Hilbert problems (the third, on the decomposition of polyhedra), in 1907 he collaborated with Heegaard to produce the first survey of topology, and in 1910 he began publishing his own investigations in topology and combinatorial group theory. His influence is apparent in the terms Dehn's algorithm, Dehn's lemma and Dehn surgery (and Dehnsche Gruppenbilder, generally known in English as Cayley diagrams), but direct access to his work has been difficult. No edition of his works has been produced, and some of his most important results were never published, at least not by him. The present volume is a modest attempt to bring Dehn's work to a wider audience, particularly topologists and group theorists curious about the origins of their subject and interested in mining the sources for new ideas. It consists of English translations of eight works : five of Dehn's major papers in topology and combinatorial group theory, and three unpublished works which illuminate the published papers and contain some results not available elsewhere. In addition, I have written a short introduction to each work, summarising its contents and trying to establish its place among related works of Dehn and others, and I have added an appendix on the Dehn-Nielsen theorem (often known simply as Nielsen's theorem) .
Elementary Topology
Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov
Publisher: American Mathematical Soc.
ISBN: 9780821886250
Category : Mathematics
Languages : en
Pages : 432
Book Description
This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.
Publisher: American Mathematical Soc.
ISBN: 9780821886250
Category : Mathematics
Languages : en
Pages : 432
Book Description
This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.
Computational Topology
Author: Herbert Edelsbrunner
Publisher: American Mathematical Society
ISBN: 1470467690
Category : Mathematics
Languages : en
Pages : 241
Book Description
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.
Publisher: American Mathematical Society
ISBN: 1470467690
Category : Mathematics
Languages : en
Pages : 241
Book Description
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.
Computational Topology for Data Analysis
Author: Tamal Krishna Dey
Publisher: Cambridge University Press
ISBN: 1009103199
Category : Mathematics
Languages : en
Pages : 456
Book Description
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
Publisher: Cambridge University Press
ISBN: 1009103199
Category : Mathematics
Languages : en
Pages : 456
Book Description
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
Algebraic Topology
Author: Allen Hatcher
Publisher: Cambridge University Press
ISBN: 9780521795401
Category : Mathematics
Languages : en
Pages : 572
Book Description
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.
Publisher: Cambridge University Press
ISBN: 9780521795401
Category : Mathematics
Languages : en
Pages : 572
Book Description
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.
Topology from the Differentiable Viewpoint
Author: John Willard Milnor
Publisher: Princeton University Press
ISBN: 9780691048338
Category : Mathematics
Languages : en
Pages : 80
Book Description
This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.
Publisher: Princeton University Press
ISBN: 9780691048338
Category : Mathematics
Languages : en
Pages : 80
Book Description
This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.
Ten Mathematical Essays on Approximation in Analysis and Topology
Author: Juan Ferrera
Publisher: Elsevier
ISBN: 0080459196
Category : Mathematics
Languages : en
Pages : 283
Book Description
This book collects 10 mathematical essays on approximation in Analysis and Topology by some of the most influent mathematicians of the last third of the 20th Century. Besides the papers contain the very ultimate results in each of their respective fields, many of them also include a series of historical remarks about the state of mathematics at the time they found their most celebrated results, as well as some of their personal circumstances originating them, which makes particularly attractive the book for all scientist interested in these fields, from beginners to experts. These gem pieces of mathematical intra-history should delight to many forthcoming generations of mathematicians, who will enjoy some of the most fruitful mathematics of the last third of 20th century presented by their own authors. This book covers a wide range of new mathematical results. Among them, the most advanced characterisations of very weak versions of the classical maximum principle, the very last results on global bifurcation theory, algebraic multiplicities, general dependencies of solutions of boundary value problems with respect to variations of the underlying domains, the deepest available results in rapid monotone schemes applied to the resolution of non-linear boundary value problems, the intra-history of the the genesis of the first general global continuation results in the context of periodic solutions of nonlinear periodic systems, as well as the genesis of the coincidence degree, some novel applications of the topological degree for ascertaining the stability of the periodic solutions of some classical families of periodic second order equations, the resolution of a number of conjectures related to some very celebrated approximation problems in topology and inverse problems, as well as a number of applications to engineering, an extremely sharp discussion of the problem of approximating topological spaces by polyhedra using various techniques based on inverse systems, as well as homotopy expansions, and the Bishop-Phelps theorem. Key features: - It contains a number of seminal contributions by some of the most world leading mathematicians of the second half of the 20th Century. - The papers cover a complete range of topics, from the intra-history of the involved mathematics to the very last developments in Differential Equations, Inverse Problems, Analysis, Nonlinear Analysis and Topology. - All contributed papers are self-contained works containing rather complete list of references on each of the subjects covered. - The book contains some of the very last findings concerning the maximum principle, the theory of monotone schemes in nonlinear problems, the theory of algebraic multiplicities, global bifurcation theory, dynamics of periodic equations and systems, inverse problems and approximation in topology. - The papers are extremely well written and directed to a wide audience, from beginners to experts. An excellent occasion to become engaged with some of the most fruitful mathematics developed during the last decades.
Publisher: Elsevier
ISBN: 0080459196
Category : Mathematics
Languages : en
Pages : 283
Book Description
This book collects 10 mathematical essays on approximation in Analysis and Topology by some of the most influent mathematicians of the last third of the 20th Century. Besides the papers contain the very ultimate results in each of their respective fields, many of them also include a series of historical remarks about the state of mathematics at the time they found their most celebrated results, as well as some of their personal circumstances originating them, which makes particularly attractive the book for all scientist interested in these fields, from beginners to experts. These gem pieces of mathematical intra-history should delight to many forthcoming generations of mathematicians, who will enjoy some of the most fruitful mathematics of the last third of 20th century presented by their own authors. This book covers a wide range of new mathematical results. Among them, the most advanced characterisations of very weak versions of the classical maximum principle, the very last results on global bifurcation theory, algebraic multiplicities, general dependencies of solutions of boundary value problems with respect to variations of the underlying domains, the deepest available results in rapid monotone schemes applied to the resolution of non-linear boundary value problems, the intra-history of the the genesis of the first general global continuation results in the context of periodic solutions of nonlinear periodic systems, as well as the genesis of the coincidence degree, some novel applications of the topological degree for ascertaining the stability of the periodic solutions of some classical families of periodic second order equations, the resolution of a number of conjectures related to some very celebrated approximation problems in topology and inverse problems, as well as a number of applications to engineering, an extremely sharp discussion of the problem of approximating topological spaces by polyhedra using various techniques based on inverse systems, as well as homotopy expansions, and the Bishop-Phelps theorem. Key features: - It contains a number of seminal contributions by some of the most world leading mathematicians of the second half of the 20th Century. - The papers cover a complete range of topics, from the intra-history of the involved mathematics to the very last developments in Differential Equations, Inverse Problems, Analysis, Nonlinear Analysis and Topology. - All contributed papers are self-contained works containing rather complete list of references on each of the subjects covered. - The book contains some of the very last findings concerning the maximum principle, the theory of monotone schemes in nonlinear problems, the theory of algebraic multiplicities, global bifurcation theory, dynamics of periodic equations and systems, inverse problems and approximation in topology. - The papers are extremely well written and directed to a wide audience, from beginners to experts. An excellent occasion to become engaged with some of the most fruitful mathematics developed during the last decades.