Padé Methods for Painlevé Equations

Padé Methods for Painlevé Equations PDF Author: Hidehito Nagao
Publisher: Springer Nature
ISBN: 9811629986
Category : Science
Languages : en
Pages : 94

Get Book Here

Book Description
The isomonodromic deformation equations such as the Painlevé and Garnier systems are an important class of nonlinear differential equations in mathematics and mathematical physics. For discrete analogs of these equations in particular, much progress has been made in recent decades. Various approaches to such isomonodromic equations are known: the Painlevé test/Painlevé property, reduction of integrable hierarchy, the Lax formulation, algebro-geometric methods, and others. Among them, the Padé method explained in this book provides a simple approach to those equations in both continuous and discrete cases. For a given function f(x), the Padé approximation/interpolation supplies the rational functions P(x), Q(x) as approximants such as f(x)~P(x)/Q(x). The basic idea of the Padé method is to consider the linear differential (or difference) equations satisfied by P(x) and f(x)Q(x). In choosing the suitable approximation problem, the linear differential equations give the Lax pair for some isomonodromic equations. Although this relation between the isomonodromic equations and Padé approximations has been known classically, a systematic study including discrete cases has been conducted only recently. By this simple and easy procedure, one can simultaneously obtain various results such as the nonlinear evolution equation, its Lax pair, and their special solutions. In this way, the method is a convenient means of approaching the isomonodromic deformation equations.

Padé Methods for Painlevé Equations

Padé Methods for Painlevé Equations PDF Author: Hidehito Nagao
Publisher: Springer Nature
ISBN: 9811629986
Category : Science
Languages : en
Pages : 94

Get Book Here

Book Description
The isomonodromic deformation equations such as the Painlevé and Garnier systems are an important class of nonlinear differential equations in mathematics and mathematical physics. For discrete analogs of these equations in particular, much progress has been made in recent decades. Various approaches to such isomonodromic equations are known: the Painlevé test/Painlevé property, reduction of integrable hierarchy, the Lax formulation, algebro-geometric methods, and others. Among them, the Padé method explained in this book provides a simple approach to those equations in both continuous and discrete cases. For a given function f(x), the Padé approximation/interpolation supplies the rational functions P(x), Q(x) as approximants such as f(x)~P(x)/Q(x). The basic idea of the Padé method is to consider the linear differential (or difference) equations satisfied by P(x) and f(x)Q(x). In choosing the suitable approximation problem, the linear differential equations give the Lax pair for some isomonodromic equations. Although this relation between the isomonodromic equations and Padé approximations has been known classically, a systematic study including discrete cases has been conducted only recently. By this simple and easy procedure, one can simultaneously obtain various results such as the nonlinear evolution equation, its Lax pair, and their special solutions. In this way, the method is a convenient means of approaching the isomonodromic deformation equations.

Algebraic and Analytic Aspects of Integrable Systems and Painleve Equations

Algebraic and Analytic Aspects of Integrable Systems and Painleve Equations PDF Author: Anton Dzhamay
Publisher: American Mathematical Soc.
ISBN: 1470416549
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
This volume contains the proceedings of the AMS Special Session on Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations, held on January 18, 2014, at the Joint Mathematics Meetings in Baltimore, MD. The theory of integrable systems has been at the forefront of some of the most important developments in mathematical physics in the last 50 years. The techniques to study such systems have solid foundations in algebraic geometry, differential geometry, and group representation theory. Many important special solutions of continuous and discrete integrable systems can be written in terms of special functions such as hypergeometric and basic hypergeometric functions. The analytic tools developed to study integrable systems have numerous applications in random matrix theory, statistical mechanics and quantum gravity. One of the most exciting recent developments has been the emergence of good and interesting discrete and quantum analogues of classical integrable differential equations, such as the Painlevé equations and soliton equations. Many algebraic and analytic ideas developed in the continuous case generalize in a beautifully natural manner to discrete integrable systems. The editors have sought to bring together a collection of expository and research articles that represent a good cross section of ideas and methods in these active areas of research within integrable systems and their applications.

Geometric Methods in Physics XL

Geometric Methods in Physics XL PDF Author: Piotr Kielanowski
Publisher: Springer Nature
ISBN: 3031624076
Category : Geometry
Languages : en
Pages : 466

Get Book Here

Book Description
Zusammenfassung: This volume collects papers based on lectures given at the XL Workshop on Geometric Methods in Physics, held in Białowieża, Poland in July 2023. These chapters provide readers an overview of cutting-edge research in infinite-dimensional groups, integrable systems, quantum groups, Lie algebras and their generalizations and a wide variety of other areas. Specific topics include: Yang-Baxter equation The restricted Siegel disc and restricted Grassmannian Geometric and deformation quantization Degenerate integrability Lie algebroids and groupoids Skew braces Geometric Methods in Physics XL will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas

Symmetries, Integrable Systems and Representations

Symmetries, Integrable Systems and Representations PDF Author: Kenji Iohara
Publisher: Springer Science & Business Media
ISBN: 1447148630
Category : Mathematics
Languages : en
Pages : 633

Get Book Here

Book Description
This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.

Algebraic Methods and $q$-Special Functions

Algebraic Methods and $q$-Special Functions PDF Author: Jan Felipe Van Diejen
Publisher: American Mathematical Soc.
ISBN: 0821820265
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
There has been revived interest in recent years in the study of special functions. Many of the latest advances in the field were inspired by the works of R. A. Askey and colleagues on basic hypergeometric series and I. G. Macdonald on orthogonal polynomials related to root systems. Significant progress was made by the use of algebraic techniques involving quantum groups, Hecke algebras, and combinatorial methods. The CRM organized a workshop for key researchers in the field to present an overview of current trends. This volume consists of the contributions to that workshop. Topics include basic hypergeometric functions, algebraic and representation-theoretic methods, combinatorics of symmetric functions, root systems, and the connections with integrable systems.

Partition Functions and Automorphic Forms

Partition Functions and Automorphic Forms PDF Author: Valery A. Gritsenko
Publisher: Springer Nature
ISBN: 3030424006
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
This book offers an introduction to the research in several recently discovered and actively developing mathematical and mathematical physics areas. It focuses on: 1) Feynman integrals and modular functions, 2) hyperbolic and Lorentzian Kac-Moody algebras, related automorphic forms and applications to quantum gravity, 3) superconformal indices and elliptic hypergeometric integrals, related instanton partition functions, 4) moonshine, its arithmetic aspects, Jacobi forms, elliptic genus, and string theory, and 5) theory and applications of the elliptic Painleve equation, and aspects of Painleve equations in quantum field theories. All the topics covered are related to various partition functions emerging in different supersymmetric and ordinary quantum field theories in curved space-times of different (d=2,3,...,6) dimensions. Presenting multidisciplinary methods (localization, Borcherds products, theory of special functions, Cremona maps, etc) for treating a range of partition functions, the book is intended for graduate students and young postdocs interested in the interaction between quantum field theory and mathematics related to automorphic forms, representation theory, number theory and geometry, and mirror symmetry.

Handbook of Ordinary Differential Equations

Handbook of Ordinary Differential Equations PDF Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1351643916
Category : Mathematics
Languages : en
Pages : 1584

Get Book Here

Book Description
The Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, is an exceptional and complete reference for scientists and engineers as it contains over 7,000 ordinary differential equations with solutions. This book contains more equations and methods used in the field than any other book currently available. Included in the handbook are exact, asymptotic, approximate analytical, numerical symbolic and qualitative methods that are used for solving and analyzing linear and nonlinear equations. The authors also present formulas for effective construction of solutions and many different equations arising in various applications like heat transfer, elasticity, hydrodynamics and more. This extensive handbook is the perfect resource for engineers and scientists searching for an exhaustive reservoir of information on ordinary differential equations.

Regional Conference on Science, Technology and Social Sciences (RCSTSS 2016)

Regional Conference on Science, Technology and Social Sciences (RCSTSS 2016) PDF Author: Nor Azizah Yacob
Publisher: Springer
ISBN: 9811300747
Category : Business & Economics
Languages : en
Pages : 1019

Get Book Here

Book Description
This book gathers selected theoretical and applied science papers presented at the 2016 Regional Conference of Sciences, Technology and Social Sciences (RCSTSS 2016), organized biannually by the Universiti Teknologi MARA Pahang, Malaysia. Addressing a broad range of topics, including architecture, computer science, engineering, environmental and management, furniture, forestry, health and medicine, material science, mathematics, plantation and agrotechnology, sports science and statistics, the book serves as an essential platform for disseminating research findings, and inspires positive innovations in the region’s development. The carefully reviewed papers in this volume present work by researchers of local, regional and global prominence. Taken together, they offer a valuable reference guide and point of departure for all academics and students who want to pursue further research in their respective fields.

Discrete Systems and Integrability

Discrete Systems and Integrability PDF Author: J. Hietarinta
Publisher: Cambridge University Press
ISBN: 1107042720
Category : Mathematics
Languages : en
Pages : 461

Get Book Here

Book Description
A first introduction to the theory of discrete integrable systems at a level suitable for students and non-experts.

The Princeton Companion to Applied Mathematics

The Princeton Companion to Applied Mathematics PDF Author: Nicholas J. Higham
Publisher: Princeton University Press
ISBN: 1400874475
Category : Mathematics
Languages : en
Pages : 1031

Get Book Here

Book Description
The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index