Author: Esther Pacitti
Publisher: Springer Nature
ISBN: 3031018885
Category : Computers
Languages : en
Pages : 90
Book Description
As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high latency and high network traffic in unstructured networks. To address these limitations, gossip protocols which are easy to deploy and scale well, can be exploited. In this book, we will give an overview of these different P2P techniques and architectures, discuss their trade-offs, and illustrate their use for decentralizing several large-scale data sharing applications. Table of Contents: P2P Overlays, Query Routing, and Gossiping / Content Distribution in P2P Systems / Recommendation Systems / Top-k Query Processing in P2P Systems
P2P Techniques for Decentralized Applications
Author: Esther Pacitti
Publisher: Springer Nature
ISBN: 3031018885
Category : Computers
Languages : en
Pages : 90
Book Description
As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high latency and high network traffic in unstructured networks. To address these limitations, gossip protocols which are easy to deploy and scale well, can be exploited. In this book, we will give an overview of these different P2P techniques and architectures, discuss their trade-offs, and illustrate their use for decentralizing several large-scale data sharing applications. Table of Contents: P2P Overlays, Query Routing, and Gossiping / Content Distribution in P2P Systems / Recommendation Systems / Top-k Query Processing in P2P Systems
Publisher: Springer Nature
ISBN: 3031018885
Category : Computers
Languages : en
Pages : 90
Book Description
As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high latency and high network traffic in unstructured networks. To address these limitations, gossip protocols which are easy to deploy and scale well, can be exploited. In this book, we will give an overview of these different P2P techniques and architectures, discuss their trade-offs, and illustrate their use for decentralizing several large-scale data sharing applications. Table of Contents: P2P Overlays, Query Routing, and Gossiping / Content Distribution in P2P Systems / Recommendation Systems / Top-k Query Processing in P2P Systems
P2P Techniques for Decentralized Applications
Author: Esther Pacitti
Publisher: Morgan & Claypool Publishers
ISBN: 1608458237
Category : Technology & Engineering
Languages : en
Pages : 106
Book Description
As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high latency and high network traffic in unstructured networks. To address these limitations, gossip protocols which are easy to deploy and scale well, can be exploited. In this book, we will give an overview of these different P2P techniques and architectures, discuss their trade-offs, and illustrate their use for decentralizing several large-scale data sharing applications. Table of Contents: P2P Overlays, Query Routing, and Gossiping / Content Distribution in P2P Systems / Recommendation Systems / Top-k Query Processing in P2P Systems
Publisher: Morgan & Claypool Publishers
ISBN: 1608458237
Category : Technology & Engineering
Languages : en
Pages : 106
Book Description
As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high latency and high network traffic in unstructured networks. To address these limitations, gossip protocols which are easy to deploy and scale well, can be exploited. In this book, we will give an overview of these different P2P techniques and architectures, discuss their trade-offs, and illustrate their use for decentralizing several large-scale data sharing applications. Table of Contents: P2P Overlays, Query Routing, and Gossiping / Content Distribution in P2P Systems / Recommendation Systems / Top-k Query Processing in P2P Systems
Business Processes
Author: Tova Milo
Publisher: Springer Nature
ISBN: 3031018915
Category : Computers
Languages : en
Pages : 91
Book Description
While classic data management focuses on the data itself, research on Business Processes also considers the context in which this data is generated and manipulated, namely the processes, users, and goals that this data serves. This provides the analysts a better perspective of the organizational needs centered around the data. As such, this research is of fundamental importance. Much of the success of database systems in the last decade is due to the beauty and elegance of the relational model and its declarative query languages, combined with a rich spectrum of underlying evaluation and optimization techniques, and efficient implementations. Much like the case for traditional database research, elegant modeling and rich underlying technology are likely to be highly beneficiary for the Business Process owners and their users; both can benefit from easy formulation and analysis of the processes. While there have been many important advances in this research in recent years, there is still much to be desired: specifically, there have been many works that focus on the processes behavior (flow), and many that focus on its data, but only very few works have dealt with both the state-of-the-art in a database approach to Business Process modeling and analysis, the progress towards a holistic flow-and-data framework for these tasks, and highlight the current gaps and research directions. Table of Contents: Introduction / Modeling / Querying Business Processes / Other Issues / Conclusion
Publisher: Springer Nature
ISBN: 3031018915
Category : Computers
Languages : en
Pages : 91
Book Description
While classic data management focuses on the data itself, research on Business Processes also considers the context in which this data is generated and manipulated, namely the processes, users, and goals that this data serves. This provides the analysts a better perspective of the organizational needs centered around the data. As such, this research is of fundamental importance. Much of the success of database systems in the last decade is due to the beauty and elegance of the relational model and its declarative query languages, combined with a rich spectrum of underlying evaluation and optimization techniques, and efficient implementations. Much like the case for traditional database research, elegant modeling and rich underlying technology are likely to be highly beneficiary for the Business Process owners and their users; both can benefit from easy formulation and analysis of the processes. While there have been many important advances in this research in recent years, there is still much to be desired: specifically, there have been many works that focus on the processes behavior (flow), and many that focus on its data, but only very few works have dealt with both the state-of-the-art in a database approach to Business Process modeling and analysis, the progress towards a holistic flow-and-data framework for these tasks, and highlight the current gaps and research directions. Table of Contents: Introduction / Modeling / Querying Business Processes / Other Issues / Conclusion
Deep Web Query Interface Understanding and Integration
Author: Eduard C. Dragut
Publisher: Springer Nature
ISBN: 3031018893
Category : Computers
Languages : en
Pages : 150
Book Description
There are millions of searchable data sources on the Web and to a large extent their contents can only be reached through their own query interfaces. There is an enormous interest in making the data in these sources easily accessible. There are primarily two general approaches to achieve this objective. The first is to surface the contents of these sources from the deep Web and add the contents to the index of regular search engines. The second is to integrate the searching capabilities of these sources and support integrated access to them. In this book, we introduce the state-of-the-art techniques for extracting, understanding, and integrating the query interfaces of deep Web data sources. These techniques are critical for producing an integrated query interface for each domain. The interface serves as the mediator for searching all data sources in the concerned domain. While query interface integration is only relevant for the deep Web integration approach, the extraction and understanding of query interfaces are critical for both deep Web exploration approaches. This book aims to provide in-depth and comprehensive coverage of the key technologies needed to create high quality integrated query interfaces automatically. The following technical issues are discussed in detail in this book: query interface modeling, query interface extraction, query interface clustering, query interface matching, query interface attribute integration, and query interface integration. Table of Contents: Introduction / Query Interface Representation and Extraction / Query Interface Clustering and Categorization / Query Interface Matching / Query Interface Attribute Integration / Query Interface Integration / Summary and Future Research
Publisher: Springer Nature
ISBN: 3031018893
Category : Computers
Languages : en
Pages : 150
Book Description
There are millions of searchable data sources on the Web and to a large extent their contents can only be reached through their own query interfaces. There is an enormous interest in making the data in these sources easily accessible. There are primarily two general approaches to achieve this objective. The first is to surface the contents of these sources from the deep Web and add the contents to the index of regular search engines. The second is to integrate the searching capabilities of these sources and support integrated access to them. In this book, we introduce the state-of-the-art techniques for extracting, understanding, and integrating the query interfaces of deep Web data sources. These techniques are critical for producing an integrated query interface for each domain. The interface serves as the mediator for searching all data sources in the concerned domain. While query interface integration is only relevant for the deep Web integration approach, the extraction and understanding of query interfaces are critical for both deep Web exploration approaches. This book aims to provide in-depth and comprehensive coverage of the key technologies needed to create high quality integrated query interfaces automatically. The following technical issues are discussed in detail in this book: query interface modeling, query interface extraction, query interface clustering, query interface matching, query interface attribute integration, and query interface integration. Table of Contents: Introduction / Query Interface Representation and Extraction / Query Interface Clustering and Categorization / Query Interface Matching / Query Interface Attribute Integration / Query Interface Integration / Summary and Future Research
Human Interaction with Graphs
Author: Sourav S. Bhowmick
Publisher: Springer Nature
ISBN: 3031018613
Category : Computers
Languages : en
Pages : 186
Book Description
Interacting with graphs using queries has emerged as an important research problem for real-world applications that center on large graph data. Given the syntactic complexity of graph query languages (e.g., SPARQL, Cypher), visual graph query interfaces make it easy for non-programmers to query such graph data repositories. In this book, we present recent developments in the emerging area of visual graph querying paradigm that bridges traditional graph querying with human computer interaction (HCI). Specifically, we focus on techniques that emphasize deep integration between the visual graph query interface and the underlying graph query engine. We discuss various strategies and guidance for constructing graph queries visually, interleaving processing of graph queries and visual actions, visual exploration of graph query results, and automated performance study of visual graph querying frameworks. In addition, this book highlights open problems and new research directions. In summary, in this book, we review and summarize the research thus far into the integration of HCI and graph querying to facilitate user-friendly interaction with graph-structured data, giving researchers a snapshot of the current state of the art in this topic, and future research directions.
Publisher: Springer Nature
ISBN: 3031018613
Category : Computers
Languages : en
Pages : 186
Book Description
Interacting with graphs using queries has emerged as an important research problem for real-world applications that center on large graph data. Given the syntactic complexity of graph query languages (e.g., SPARQL, Cypher), visual graph query interfaces make it easy for non-programmers to query such graph data repositories. In this book, we present recent developments in the emerging area of visual graph querying paradigm that bridges traditional graph querying with human computer interaction (HCI). Specifically, we focus on techniques that emphasize deep integration between the visual graph query interface and the underlying graph query engine. We discuss various strategies and guidance for constructing graph queries visually, interleaving processing of graph queries and visual actions, visual exploration of graph query results, and automated performance study of visual graph querying frameworks. In addition, this book highlights open problems and new research directions. In summary, in this book, we review and summarize the research thus far into the integration of HCI and graph querying to facilitate user-friendly interaction with graph-structured data, giving researchers a snapshot of the current state of the art in this topic, and future research directions.
Information and Influence Propagation in Social Networks
Author: Wei Chen
Publisher: Springer Nature
ISBN: 3031018508
Category : Computers
Languages : en
Pages : 161
Book Description
Research on social networks has exploded over the last decade. To a large extent, this has been fueled by the spectacular growth of social media and online social networking sites, which continue growing at a very fast pace, as well as by the increasing availability of very large social network datasets for purposes of research. A rich body of this research has been devoted to the analysis of the propagation of information, influence, innovations, infections, practices and customs through networks. Can we build models to explain the way these propagations occur? How can we validate our models against any available real datasets consisting of a social network and propagation traces that occurred in the past? These are just some questions studied by researchers in this area. Information propagation models find applications in viral marketing, outbreak detection, finding key blog posts to read in order to catch important stories, finding leaders or trendsetters, information feed ranking, etc. A number of algorithmic problems arising in these applications have been abstracted and studied extensively by researchers under the garb of influence maximization. This book starts with a detailed description of well-established diffusion models, including the independent cascade model and the linear threshold model, that have been successful at explaining propagation phenomena. We describe their properties as well as numerous extensions to them, introducing aspects such as competition, budget, and time-criticality, among many others. We delve deep into the key problem of influence maximization, which selects key individuals to activate in order to influence a large fraction of a network. Influence maximization in classic diffusion models including both the independent cascade and the linear threshold models is computationally intractable, more precisely #P-hard, and we describe several approximation algorithms and scalable heuristics that have been proposed in the literature. Finally, we also deal with key issues that need to be tackled in order to turn this research into practice, such as learning the strength with which individuals in a network influence each other, as well as the practical aspects of this research including the availability of datasets and software tools for facilitating research. We conclude with a discussion of various research problems that remain open, both from a technical perspective and from the viewpoint of transferring the results of research into industry strength applications.
Publisher: Springer Nature
ISBN: 3031018508
Category : Computers
Languages : en
Pages : 161
Book Description
Research on social networks has exploded over the last decade. To a large extent, this has been fueled by the spectacular growth of social media and online social networking sites, which continue growing at a very fast pace, as well as by the increasing availability of very large social network datasets for purposes of research. A rich body of this research has been devoted to the analysis of the propagation of information, influence, innovations, infections, practices and customs through networks. Can we build models to explain the way these propagations occur? How can we validate our models against any available real datasets consisting of a social network and propagation traces that occurred in the past? These are just some questions studied by researchers in this area. Information propagation models find applications in viral marketing, outbreak detection, finding key blog posts to read in order to catch important stories, finding leaders or trendsetters, information feed ranking, etc. A number of algorithmic problems arising in these applications have been abstracted and studied extensively by researchers under the garb of influence maximization. This book starts with a detailed description of well-established diffusion models, including the independent cascade model and the linear threshold model, that have been successful at explaining propagation phenomena. We describe their properties as well as numerous extensions to them, introducing aspects such as competition, budget, and time-criticality, among many others. We delve deep into the key problem of influence maximization, which selects key individuals to activate in order to influence a large fraction of a network. Influence maximization in classic diffusion models including both the independent cascade and the linear threshold models is computationally intractable, more precisely #P-hard, and we describe several approximation algorithms and scalable heuristics that have been proposed in the literature. Finally, we also deal with key issues that need to be tackled in order to turn this research into practice, such as learning the strength with which individuals in a network influence each other, as well as the practical aspects of this research including the availability of datasets and software tools for facilitating research. We conclude with a discussion of various research problems that remain open, both from a technical perspective and from the viewpoint of transferring the results of research into industry strength applications.
On Transactional Concurrency Control
Author: Goetz Graefe
Publisher: Springer Nature
ISBN: 3031018737
Category : Computers
Languages : en
Pages : 383
Book Description
This book contains a number of chapters on transactional database concurrency control. This volume's entire sequence of chapters can summarized as follows: A two-sentence summary of the volume's entire sequence of chapters is this: traditional locking techniques can be improved in multiple dimensions, notably in lock scopes (sizes), lock modes (increment, decrement, and more), lock durations (late acquisition, early release), and lock acquisition sequence (to avoid deadlocks). Even if some of these improvements can be transferred to optimistic concurrency control, notably a fine granularity of concurrency control with serializable transaction isolation including phantom protection, pessimistic concurrency control is categorically superior to optimistic concurrency control, i.e., independent of application, workload, deployment, hardware, and software implementation.
Publisher: Springer Nature
ISBN: 3031018737
Category : Computers
Languages : en
Pages : 383
Book Description
This book contains a number of chapters on transactional database concurrency control. This volume's entire sequence of chapters can summarized as follows: A two-sentence summary of the volume's entire sequence of chapters is this: traditional locking techniques can be improved in multiple dimensions, notably in lock scopes (sizes), lock modes (increment, decrement, and more), lock durations (late acquisition, early release), and lock acquisition sequence (to avoid deadlocks). Even if some of these improvements can be transferred to optimistic concurrency control, notably a fine granularity of concurrency control with serializable transaction isolation including phantom protection, pessimistic concurrency control is categorically superior to optimistic concurrency control, i.e., independent of application, workload, deployment, hardware, and software implementation.
Query Processing over Incomplete Databases
Author: Yunjun Gao
Publisher: Springer Nature
ISBN: 303101863X
Category : Computers
Languages : en
Pages : 106
Book Description
Incomplete data is part of life and almost all areas of scientific studies. Users tend to skip certain fields when they fill out online forms; participants choose to ignore sensitive questions on surveys; sensors fail, resulting in the loss of certain readings; publicly viewable satellite map services have missing data in many mobile applications; and in privacy-preserving applications, the data is incomplete deliberately in order to preserve the sensitivity of some attribute values. Query processing is a fundamental problem in computer science, and is useful in a variety of applications. In this book, we mostly focus on the query processing over incomplete databases, which involves finding a set of qualified objects from a specified incomplete dataset in order to support a wide spectrum of real-life applications. We first elaborate the three general kinds of methods of handling incomplete data, including (i) discarding the data with missing values, (ii) imputation for the missing values, and (iii) just depending on the observed data values. For the third method type, we introduce the semantics of k-nearest neighbor (kNN) search, skyline query, and top-k dominating query on incomplete data, respectively. In terms of the three representative queries over incomplete data, we investigate some advanced techniques to process incomplete data queries, including indexing, pruning as well as crowdsourcing techniques.
Publisher: Springer Nature
ISBN: 303101863X
Category : Computers
Languages : en
Pages : 106
Book Description
Incomplete data is part of life and almost all areas of scientific studies. Users tend to skip certain fields when they fill out online forms; participants choose to ignore sensitive questions on surveys; sensors fail, resulting in the loss of certain readings; publicly viewable satellite map services have missing data in many mobile applications; and in privacy-preserving applications, the data is incomplete deliberately in order to preserve the sensitivity of some attribute values. Query processing is a fundamental problem in computer science, and is useful in a variety of applications. In this book, we mostly focus on the query processing over incomplete databases, which involves finding a set of qualified objects from a specified incomplete dataset in order to support a wide spectrum of real-life applications. We first elaborate the three general kinds of methods of handling incomplete data, including (i) discarding the data with missing values, (ii) imputation for the missing values, and (iii) just depending on the observed data values. For the third method type, we introduce the semantics of k-nearest neighbor (kNN) search, skyline query, and top-k dominating query on incomplete data, respectively. In terms of the three representative queries over incomplete data, we investigate some advanced techniques to process incomplete data queries, including indexing, pruning as well as crowdsourcing techniques.
Incomplete Data and Data Dependencies in Relational Databases
Author: Sergio Greco
Publisher: Springer Nature
ISBN: 3031018931
Category : Computers
Languages : en
Pages : 111
Book Description
The chase has long been used as a central tool to analyze dependencies and their effect on queries. It has been applied to different relevant problems in database theory such as query optimization, query containment and equivalence, dependency implication, and database schema design. Recent years have seen a renewed interest in the chase as an important tool in several database applications, such as data exchange and integration, query answering in incomplete data, and many others. It is well known that the chase algorithm might be non-terminating and thus, in order for it to find practical applicability, it is crucial to identify cases where its termination is guaranteed. Another important aspect to consider when dealing with the chase is that it can introduce null values into the database, thereby leading to incomplete data. Thus, in several scenarios where the chase is used the problem of dealing with data dependencies and incomplete data arises. This book discusses fundamental issues concerning data dependencies and incomplete data with a particular focus on the chase and its applications in different database areas. We report recent results about the crucial issue of identifying conditions that guarantee the chase termination. Different database applications where the chase is a central tool are discussed with particular attention devoted to query answering in the presence of data dependencies and database schema design. Table of Contents: Introduction / Relational Databases / Incomplete Databases / The Chase Algorithm / Chase Termination / Data Dependencies and Normal Forms / Universal Repairs / Chase and Database Applications
Publisher: Springer Nature
ISBN: 3031018931
Category : Computers
Languages : en
Pages : 111
Book Description
The chase has long been used as a central tool to analyze dependencies and their effect on queries. It has been applied to different relevant problems in database theory such as query optimization, query containment and equivalence, dependency implication, and database schema design. Recent years have seen a renewed interest in the chase as an important tool in several database applications, such as data exchange and integration, query answering in incomplete data, and many others. It is well known that the chase algorithm might be non-terminating and thus, in order for it to find practical applicability, it is crucial to identify cases where its termination is guaranteed. Another important aspect to consider when dealing with the chase is that it can introduce null values into the database, thereby leading to incomplete data. Thus, in several scenarios where the chase is used the problem of dealing with data dependencies and incomplete data arises. This book discusses fundamental issues concerning data dependencies and incomplete data with a particular focus on the chase and its applications in different database areas. We report recent results about the crucial issue of identifying conditions that guarantee the chase termination. Different database applications where the chase is a central tool are discussed with particular attention devoted to query answering in the presence of data dependencies and database schema design. Table of Contents: Introduction / Relational Databases / Incomplete Databases / The Chase Algorithm / Chase Termination / Data Dependencies and Normal Forms / Universal Repairs / Chase and Database Applications
Similarity Joins in Relational Database Systems
Author: Nikolaus Augsten
Publisher: Springer Nature
ISBN: 3031018516
Category : Computers
Languages : en
Pages : 106
Book Description
State-of-the-art database systems manage and process a variety of complex objects, including strings and trees. For such objects equality comparisons are often not meaningful and must be replaced by similarity comparisons. This book describes the concepts and techniques to incorporate similarity into database systems. We start out by discussing the properties of strings and trees, and identify the edit distance as the de facto standard for comparing complex objects. Since the edit distance is computationally expensive, token-based distances have been introduced to speed up edit distance computations. The basic idea is to decompose complex objects into sets of tokens that can be compared efficiently. Token-based distances are used to compute an approximation of the edit distance and prune expensive edit distance calculations. A key observation when computing similarity joins is that many of the object pairs, for which the similarity is computed, are very different from each other. Filters exploit this property to improve the performance of similarity joins. A filter preprocesses the input data sets and produces a set of candidate pairs. The distance function is evaluated on the candidate pairs only. We describe the essential query processing techniques for filters based on lower and upper bounds. For token equality joins we describe prefix, size, positional and partitioning filters, which can be used to avoid the computation of small intersections that are not needed since the similarity would be too low.
Publisher: Springer Nature
ISBN: 3031018516
Category : Computers
Languages : en
Pages : 106
Book Description
State-of-the-art database systems manage and process a variety of complex objects, including strings and trees. For such objects equality comparisons are often not meaningful and must be replaced by similarity comparisons. This book describes the concepts and techniques to incorporate similarity into database systems. We start out by discussing the properties of strings and trees, and identify the edit distance as the de facto standard for comparing complex objects. Since the edit distance is computationally expensive, token-based distances have been introduced to speed up edit distance computations. The basic idea is to decompose complex objects into sets of tokens that can be compared efficiently. Token-based distances are used to compute an approximation of the edit distance and prune expensive edit distance calculations. A key observation when computing similarity joins is that many of the object pairs, for which the similarity is computed, are very different from each other. Filters exploit this property to improve the performance of similarity joins. A filter preprocesses the input data sets and produces a set of candidate pairs. The distance function is evaluated on the candidate pairs only. We describe the essential query processing techniques for filters based on lower and upper bounds. For token equality joins we describe prefix, size, positional and partitioning filters, which can be used to avoid the computation of small intersections that are not needed since the similarity would be too low.