Author: David Merwyn Blow
Publisher: Oxford University Press, USA
ISBN: 0198510519
Category : Medical
Languages : en
Pages : 248
Book Description
X-ray crystallography is the main method used to determine the structure of biological molecules. X-ray crystallography is explained without maths and reading this text allows biologists to assess the quality and accuracy of biological structures.
Outline of Crystallography for Biologists
Author: David Merwyn Blow
Publisher: Oxford University Press, USA
ISBN: 0198510519
Category : Medical
Languages : en
Pages : 248
Book Description
X-ray crystallography is the main method used to determine the structure of biological molecules. X-ray crystallography is explained without maths and reading this text allows biologists to assess the quality and accuracy of biological structures.
Publisher: Oxford University Press, USA
ISBN: 0198510519
Category : Medical
Languages : en
Pages : 248
Book Description
X-ray crystallography is the main method used to determine the structure of biological molecules. X-ray crystallography is explained without maths and reading this text allows biologists to assess the quality and accuracy of biological structures.
Drug Design
Author: Kenneth M. Merz
Publisher: Cambridge University Press
ISBN: 0521887232
Category : Medical
Languages : en
Pages : 289
Book Description
This book provides a complete snapshot of various experimental approaches to structure-based and ligand-based drug design and is illustrated with more than 200 images.
Publisher: Cambridge University Press
ISBN: 0521887232
Category : Medical
Languages : en
Pages : 289
Book Description
This book provides a complete snapshot of various experimental approaches to structure-based and ligand-based drug design and is illustrated with more than 200 images.
Structural Biology in Drug Discovery
Author: Jean-Paul Renaud
Publisher: John Wiley & Sons
ISBN: 1118900502
Category : Medical
Languages : en
Pages : 1437
Book Description
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Publisher: John Wiley & Sons
ISBN: 1118900502
Category : Medical
Languages : en
Pages : 1437
Book Description
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Crystallography: A Very Short Introduction
Author: A. M. Glazer
Publisher: Oxford University Press
ISBN: 0191027111
Category : Science
Languages : en
Pages : 169
Book Description
Crystals have fascinated us for centuries with their beauty and symmetry, and have often been invested with magical powers. The use of X-ray diffraction, first pioneered in 1912 by father and son William and Lawrence Bragg, enabled us to probe the structure of molecules, and heralded the scientific study of crystals, leading to an understanding of their atomic arrangements at a fundamental level. The new discipline, called X-ray crystallography, has subsequently evolved into a formidable science that underpins many other scientific areas. Starting from the determination of the structures of very simple crystals, such as that of common salt, today it has become almost routine to determine the positions of tens of thousands of atoms in a crystal. In this Very Short Introduction Mike Glazer shows how the discoveries in crystallography have been applied to the creation of new and important materials, to drugs and pharmaceuticals and to our understanding of genetics, cell biology, proteins, and viruses. Tracing the history of crystallography, he analyses astonishing developments in new sources of X-rays, as well as of neutrons, and in electron microscopy, and considers the impact they have on the study of crystals today. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: Oxford University Press
ISBN: 0191027111
Category : Science
Languages : en
Pages : 169
Book Description
Crystals have fascinated us for centuries with their beauty and symmetry, and have often been invested with magical powers. The use of X-ray diffraction, first pioneered in 1912 by father and son William and Lawrence Bragg, enabled us to probe the structure of molecules, and heralded the scientific study of crystals, leading to an understanding of their atomic arrangements at a fundamental level. The new discipline, called X-ray crystallography, has subsequently evolved into a formidable science that underpins many other scientific areas. Starting from the determination of the structures of very simple crystals, such as that of common salt, today it has become almost routine to determine the positions of tens of thousands of atoms in a crystal. In this Very Short Introduction Mike Glazer shows how the discoveries in crystallography have been applied to the creation of new and important materials, to drugs and pharmaceuticals and to our understanding of genetics, cell biology, proteins, and viruses. Tracing the history of crystallography, he analyses astonishing developments in new sources of X-rays, as well as of neutrons, and in electron microscopy, and considers the impact they have on the study of crystals today. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Structure of Materials
Author: Marc De Graef
Publisher: Cambridge University Press
ISBN: 1139560476
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
This highly readable, popular textbook for upper undergraduates and graduates comprehensively covers the fundamentals of crystallography and symmetry, applying these concepts to a large range of materials. New to this edition are more streamlined coverage of crystallography, additional coverage of magnetic point group symmetry and updated material on extraterrestrial minerals and rocks. New exercises at the end of chapters, plus over 500 additional exercises available online, allow students to check their understanding of key concepts and put into practice what they have learnt. Over 400 illustrations within the text help students visualise crystal structures and more abstract mathematical objects, supporting more difficult topics like point group symmetries. Historical and biographical sections add colour and interest by giving an insight into those who have contributed significantly to the field. Supplementary online material includes password-protected solutions, over 100 crystal structure data files, and Powerpoints of figures from the book.
Publisher: Cambridge University Press
ISBN: 1139560476
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
This highly readable, popular textbook for upper undergraduates and graduates comprehensively covers the fundamentals of crystallography and symmetry, applying these concepts to a large range of materials. New to this edition are more streamlined coverage of crystallography, additional coverage of magnetic point group symmetry and updated material on extraterrestrial minerals and rocks. New exercises at the end of chapters, plus over 500 additional exercises available online, allow students to check their understanding of key concepts and put into practice what they have learnt. Over 400 illustrations within the text help students visualise crystal structures and more abstract mathematical objects, supporting more difficult topics like point group symmetries. Historical and biographical sections add colour and interest by giving an insight into those who have contributed significantly to the field. Supplementary online material includes password-protected solutions, over 100 crystal structure data files, and Powerpoints of figures from the book.
Structural Biology Using Electrons and X-rays
Author: Michael F Moody
Publisher: Academic Press
ISBN: 0080919456
Category : Science
Languages : en
Pages : 451
Book Description
Structural Biology Using Electrons and X-Rays discusses the diffraction and image-based methods used for the determination of complex biological macromolecules. The book focuses on the Fourier transform theory, which is a mathematical function that is computed to transform signals between time and frequency domain. Composed of five parts, the book examines the development of nuclear magnetic resonance (NMR), which allows the calculation of the images of a certain protein. Parts 1 to 4 provide the basic information and the applications of Fourier transforms, as well as the different methods used for image processing using X-ray crystallography and the analysis of electron micrographs. Part 5 focuses entirely on the mathematical aspect of Fourier transforms. In addition, the book examines detailed structural analyses of a specimen's symmetry (i.e., crystals, helices, polyhedral viruses and asymmetrical particles). This book is intended for the biologist or biochemist who is interested in different methods and techniques for calculating the images of proteins using nuclear magnetic resonance (NMR). It is also suitable for readers without a background in physical chemistry or mathematics. - Emphasis on common principles underlying all diffraction-based methods - Thorough grounding in theory requires understanding of only simple algebra - Visual representations and explanations of challenging content - Mathematical detail offered in short-course form to parallel the text
Publisher: Academic Press
ISBN: 0080919456
Category : Science
Languages : en
Pages : 451
Book Description
Structural Biology Using Electrons and X-Rays discusses the diffraction and image-based methods used for the determination of complex biological macromolecules. The book focuses on the Fourier transform theory, which is a mathematical function that is computed to transform signals between time and frequency domain. Composed of five parts, the book examines the development of nuclear magnetic resonance (NMR), which allows the calculation of the images of a certain protein. Parts 1 to 4 provide the basic information and the applications of Fourier transforms, as well as the different methods used for image processing using X-ray crystallography and the analysis of electron micrographs. Part 5 focuses entirely on the mathematical aspect of Fourier transforms. In addition, the book examines detailed structural analyses of a specimen's symmetry (i.e., crystals, helices, polyhedral viruses and asymmetrical particles). This book is intended for the biologist or biochemist who is interested in different methods and techniques for calculating the images of proteins using nuclear magnetic resonance (NMR). It is also suitable for readers without a background in physical chemistry or mathematics. - Emphasis on common principles underlying all diffraction-based methods - Thorough grounding in theory requires understanding of only simple algebra - Visual representations and explanations of challenging content - Mathematical detail offered in short-course form to parallel the text
Structure Determination by X-ray Crystallography
Author: Mark Ladd
Publisher: Springer Science & Business Media
ISBN: 146143954X
Category : Science
Languages : en
Pages : 784
Book Description
The advances in and applications of x-ray and neutron crystallography form the essence of this new edition of this classic textbook, while maintaining the overall plan of the book that has been well received in the academic community since the first edition in 1977. X-ray crystallography is a universal tool for studying molecular structure, and the complementary nature of neutron diffraction crystallography permits the location of atomic species in crystals which are not easily revealed by X-ray techniques alone, such as hydrogen atoms or other light atoms in the presence of heavier atoms. Thus, a chapter discussing the practice of neutron diffraction techniques, with examples, broadens the scope of the text in a highly desirable way. As with previous editions, the book contains problems to illustrate the work of each chapter, and detailed solutions are provided. Mathematical procedures related to the material of the main body of the book are not discussed in detail, but are quoted where needed with references to standard mathematical texts. To address the computational aspect of crystallography, the suite of computer programs from the fourth edition has been revised and expanded. The programs enable the reader to participate fully in many of the aspects of x-ray crystallography discussed in the book. In particular, the program system XRAY* is interactive, and enables the reader to follow through, at the monitor screen, the computational techniques involved in single-crystal structure determination, albeit in two dimensions, with the data sets provided. Exercises for students can be found in the book, and solutions are available to instructors.
Publisher: Springer Science & Business Media
ISBN: 146143954X
Category : Science
Languages : en
Pages : 784
Book Description
The advances in and applications of x-ray and neutron crystallography form the essence of this new edition of this classic textbook, while maintaining the overall plan of the book that has been well received in the academic community since the first edition in 1977. X-ray crystallography is a universal tool for studying molecular structure, and the complementary nature of neutron diffraction crystallography permits the location of atomic species in crystals which are not easily revealed by X-ray techniques alone, such as hydrogen atoms or other light atoms in the presence of heavier atoms. Thus, a chapter discussing the practice of neutron diffraction techniques, with examples, broadens the scope of the text in a highly desirable way. As with previous editions, the book contains problems to illustrate the work of each chapter, and detailed solutions are provided. Mathematical procedures related to the material of the main body of the book are not discussed in detail, but are quoted where needed with references to standard mathematical texts. To address the computational aspect of crystallography, the suite of computer programs from the fourth edition has been revised and expanded. The programs enable the reader to participate fully in many of the aspects of x-ray crystallography discussed in the book. In particular, the program system XRAY* is interactive, and enables the reader to follow through, at the monitor screen, the computational techniques involved in single-crystal structure determination, albeit in two dimensions, with the data sets provided. Exercises for students can be found in the book, and solutions are available to instructors.
Principles of Nucleic Acid Structure
Author: Stephen Neidle
Publisher: Academic Press
ISBN: 0128196785
Category : Science
Languages : en
Pages : 456
Book Description
Principles of Nucleic Acid Structure, Second Edition, provides the most complete and concise summary of underlying principles and approaches to studying nucleic acid structure, including discussions of X-ray crystallography, NMR, molecular modelling and databases. The book's focus is on a survey of structures that are especially important for biomedical research and pharmacological applications. This updated edition includes the latest advances relevant to recognition of DNA and RNA by small molecules and proteins, including sections on RNA folding, ribosome structure and antibiotic interactions, DNA quadruplexes, DNA and RNA protein complexes and short interfering RNA (siRNA).This reference is a must-have for those seeking an authoritative, comprehensive and up-to-date source on all aspects of nucleic acid structure, from basic first principles to details of recent research results. - Completely updated, with an expanded section on protein-nucleic acid interactions that reflects major increases in our knowledge - Defines technical terms for novices - Includes a complete list of resources, including relevant online databases and software, as well as useful websites
Publisher: Academic Press
ISBN: 0128196785
Category : Science
Languages : en
Pages : 456
Book Description
Principles of Nucleic Acid Structure, Second Edition, provides the most complete and concise summary of underlying principles and approaches to studying nucleic acid structure, including discussions of X-ray crystallography, NMR, molecular modelling and databases. The book's focus is on a survey of structures that are especially important for biomedical research and pharmacological applications. This updated edition includes the latest advances relevant to recognition of DNA and RNA by small molecules and proteins, including sections on RNA folding, ribosome structure and antibiotic interactions, DNA quadruplexes, DNA and RNA protein complexes and short interfering RNA (siRNA).This reference is a must-have for those seeking an authoritative, comprehensive and up-to-date source on all aspects of nucleic acid structure, from basic first principles to details of recent research results. - Completely updated, with an expanded section on protein-nucleic acid interactions that reflects major increases in our knowledge - Defines technical terms for novices - Includes a complete list of resources, including relevant online databases and software, as well as useful websites
Biomolecular Crystallography
Author: Bernhard Rupp
Publisher: Garland Science
ISBN: 1134064195
Category : Science
Languages : en
Pages : 832
Book Description
Synthesizing over thirty years of advances into a comprehensive textbook, Biomolecular Crystallography describes the fundamentals, practices, and applications of protein crystallography. Illustrated in full-color by the author, the text describes mathematical and physical concepts in accessible and accurate language. Biomolecular Crystallography will be a valuable resource for advanced undergraduate and graduate students and practitioners in structural biology, crystallography, and structural bioinformatics.
Publisher: Garland Science
ISBN: 1134064195
Category : Science
Languages : en
Pages : 832
Book Description
Synthesizing over thirty years of advances into a comprehensive textbook, Biomolecular Crystallography describes the fundamentals, practices, and applications of protein crystallography. Illustrated in full-color by the author, the text describes mathematical and physical concepts in accessible and accurate language. Biomolecular Crystallography will be a valuable resource for advanced undergraduate and graduate students and practitioners in structural biology, crystallography, and structural bioinformatics.
Millennial Biology: The National Science Foundation and American Biology, 1975-2005
Author: Donald J. McGraw
Publisher: Springer Nature
ISBN: 3030563677
Category : Science
Languages : en
Pages : 641
Book Description
National Science Foundation (NSF) is a unique federal agency because it supports scientific research financially, but does not engage in scientific work itself. Its history is known only in part because the NSF is a vibrant, expanding, and living entity that makes the final telling of its story impossible. Much can be learned from its beginning as well as its component parts. If the founding of the NSF in 1950 was couched in an era of physics, especially atomic physics, certainly by the end of the 20th century and the beginning of the 21st, biology was, and remains, the queen of sciences for the predictable future. This book highlights the elite status of America’s biological sciences as they were funded, affected, and, to a very real degree, interactively guided by the NSF. It examines important events in the earlier history of the Foundation because they play strongly upon the development of the various biology directorates. Issues such as education, applied research, medical science, the National Institutes of Health, the beginnings of biotechnology, and other matters are also discussed.
Publisher: Springer Nature
ISBN: 3030563677
Category : Science
Languages : en
Pages : 641
Book Description
National Science Foundation (NSF) is a unique federal agency because it supports scientific research financially, but does not engage in scientific work itself. Its history is known only in part because the NSF is a vibrant, expanding, and living entity that makes the final telling of its story impossible. Much can be learned from its beginning as well as its component parts. If the founding of the NSF in 1950 was couched in an era of physics, especially atomic physics, certainly by the end of the 20th century and the beginning of the 21st, biology was, and remains, the queen of sciences for the predictable future. This book highlights the elite status of America’s biological sciences as they were funded, affected, and, to a very real degree, interactively guided by the NSF. It examines important events in the earlier history of the Foundation because they play strongly upon the development of the various biology directorates. Issues such as education, applied research, medical science, the National Institutes of Health, the beginnings of biotechnology, and other matters are also discussed.