Orderings, Valuations and Quadratic Forms

Orderings, Valuations and Quadratic Forms PDF Author: Tsit-Yuen Lam
Publisher: American Mathematical Soc.
ISBN: 0821807021
Category : Mathematics
Languages : en
Pages : 158

Get Book Here

Book Description
Presents an introduction to ordered fields and reduced quadratic forms using valuation-theoretic techniques. This book describes the techniques of residue forms and the relevant Springer theory.

Orderings, Valuations and Quadratic Forms

Orderings, Valuations and Quadratic Forms PDF Author: Tsit-Yuen Lam
Publisher: American Mathematical Soc.
ISBN: 0821807021
Category : Mathematics
Languages : en
Pages : 158

Get Book Here

Book Description
Presents an introduction to ordered fields and reduced quadratic forms using valuation-theoretic techniques. This book describes the techniques of residue forms and the relevant Springer theory.

The Algebraic Theory of Quadratic Forms

The Algebraic Theory of Quadratic Forms PDF Author: Tsit-Yuen Lam
Publisher: Addison-Wesley
ISBN: 9780805356663
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description


The Algebraic and Geometric Theory of Quadratic Forms

The Algebraic and Geometric Theory of Quadratic Forms PDF Author: Richard S. Elman
Publisher: American Mathematical Soc.
ISBN: 9780821873229
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.

Symmetric Bilinear Forms

Symmetric Bilinear Forms PDF Author: John Milnor
Publisher: Springer Science & Business Media
ISBN: 3642883303
Category : Mathematics
Languages : en
Pages : 155

Get Book Here

Book Description
The theory cf quadratic forms and the intimately related theory of sym metrie bilinear forms have a lang and rich his tory, highlighted by the work of Legendre, Gauss, Minkowski, and Hasse. (Compare [Dickson] and [Bourbaki, 24, p. 185].) Our exposition will concentrate on the rela tively recent developments which begin with and are inspired by Witt's 1937 paper "Theorie der quadratischen Formen in beliebigen Körpern." We will be particularly interested in the work of A. Pfister and M. Knebusch. However, some older material will be described, particularly in Chapter II. The presentation is based on lectures by Milnor at the Institute for Ad vanced Study, and at Haverford College under the Phillips Lecture Pro gram, during the Fall of 1970, as weIl as Iectures at Princeton University il1 1966. We want to thank J. Cunningham, M. Knebusch, M. Kneser, A. Rosenberg, W. Scharlau and J.-P. Serre for helpful suggestions and corrections. Prerequisites. The reader should be familiar with the rudiments of algebra., incJuding for example the concept of tensor product for mo dules over a commutative ring. A few individual sections will require quite a bit more. The logical relationship between the various chapters can be roughly described by the diagram below. There are also five appendices, largely self-contained, which treat special topics. I. Arbitrary commutative rings I H. The ring of V. Miscellaneous IIl. Fields integers examples IV. Dedekind domains Contents Chapter r. Basie Coneepts ...

Integral Closure of Ideals, Rings, and Modules

Integral Closure of Ideals, Rings, and Modules PDF Author: Craig Huneke
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.

Positive Polynomials

Positive Polynomials PDF Author: Alexander Prestel
Publisher: Springer Science & Business Media
ISBN: 3662046482
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
Positivity is one of the most basic mathematical concepts, involved in many areas of mathematics (analysis, real algebraic geometry, functional analysis, etc.). The main objective of the book is to give useful characterizations of polynomials. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed.

A Brief Guide to Algebraic Number Theory

A Brief Guide to Algebraic Number Theory PDF Author: H. P. F. Swinnerton-Dyer
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.

$K$-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras

$K$-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras PDF Author: Bill Jacob
Publisher: American Mathematical Soc.
ISBN: 0821803409
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
Volume 2 of two - also available in a set of both volumes.

Valuation Theory and Its Applications

Valuation Theory and Its Applications PDF Author: Franz-Viktor Kuhlmann
Publisher: American Mathematical Soc.
ISBN: 9780821871393
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
This book is the first of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). Valuation theory arose in the early part of the twentieth century in connection with number theory and has many important applications to geometry and analysis: the classical application to the study of algebraic curves and to Dedekind and Prufer domains; the close connection to the famousresolution of the singularities problem; the study of the absolute Galois group of a field; the connection between ordering, valuations, and quadratic forms over a formally real field; the application to real algebraic geometry; the study of noncommutative rings; etc. The special feature of this book isits focus on current applications of valuation theory to this broad range of topics. Also included is a paper on the history of valuation theory. The book is suitable for graduate students and research mathematicians working in algebra, algebraic geometry, number theory, and mathematical logic.

Quadratic and Hermitian Forms

Quadratic and Hermitian Forms PDF Author: W. Scharlau
Publisher: Springer Science & Business Media
ISBN: 3642699715
Category : Mathematics
Languages : en
Pages : 431

Get Book Here

Book Description
For a long time - at least from Fermat to Minkowski - the theory of quadratic forms was a part of number theory. Much of the best work of the great number theorists of the eighteenth and nineteenth century was concerned with problems about quadratic forms. On the basis of their work, Minkowski, Siegel, Hasse, Eichler and many others crea ted the impressive "arithmetic" theory of quadratic forms, which has been the object of the well-known books by Bachmann (1898/1923), Eichler (1952), and O'Meara (1963). Parallel to this development the ideas of abstract algebra and abstract linear algebra introduced by Dedekind, Frobenius, E. Noether and Artin led to today's structural mathematics with its emphasis on classification problems and general structure theorems. On the basis of both - the number theory of quadratic forms and the ideas of modern algebra - Witt opened, in 1937, a new chapter in the theory of quadratic forms. His most fruitful idea was to consider not single "individual" quadratic forms but rather the entity of all forms over a fixed ground field and to construct from this an algebra ic object. This object - the Witt ring - then became the principal object of the entire theory. Thirty years later Pfister demonstrated the significance of this approach by his celebrated structure theorems.