Author:
Publisher: Rmetrics
ISBN:
Category :
Languages : en
Pages : 455
Book Description
Portfolio Optimization with R/Rmetrics
Author:
Publisher: Rmetrics
ISBN:
Category :
Languages : en
Pages : 455
Book Description
Publisher: Rmetrics
ISBN:
Category :
Languages : en
Pages : 455
Book Description
Analyzing Dependent Data with Vine Copulas
Author: Claudia Czado
Publisher:
ISBN: 9783030137861
Category : Copulas (Mathematical statistics)
Languages : en
Pages :
Book Description
This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications. It focuses on statistical estimation and selection methods for vine copulas in data applications. These flexible copula models can successfully accommodate any form of tail dependence and are vital to many applications in finance, insurance, hydrology, marketing, engineering, chemistry, aviation, climatology and health. The book explains the pair-copula construction principles underlying these statistical models and discusses how to perform model selection and inference. It also derives simulation algorithms and presents real-world examples to illustrate the methodological concepts. The book includes numerous exercises that facilitate and deepen readers understanding, and demonstrates how the R package VineCopula can be used to explore and build statistical dependence models from scratch. In closing, the book provides insights into recent developments and open research questions in vine copula based modeling. The book is intended for students as well as statisticians, data analysts and any other quantitatively oriented researchers who are new to the field of vine copulas. Accordingly, it provides the necessary background in multivariate statistics and copula theory for exploratory data tools, so that readers only need a basic grasp of statistics and probability.
Publisher:
ISBN: 9783030137861
Category : Copulas (Mathematical statistics)
Languages : en
Pages :
Book Description
This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications. It focuses on statistical estimation and selection methods for vine copulas in data applications. These flexible copula models can successfully accommodate any form of tail dependence and are vital to many applications in finance, insurance, hydrology, marketing, engineering, chemistry, aviation, climatology and health. The book explains the pair-copula construction principles underlying these statistical models and discusses how to perform model selection and inference. It also derives simulation algorithms and presents real-world examples to illustrate the methodological concepts. The book includes numerous exercises that facilitate and deepen readers understanding, and demonstrates how the R package VineCopula can be used to explore and build statistical dependence models from scratch. In closing, the book provides insights into recent developments and open research questions in vine copula based modeling. The book is intended for students as well as statisticians, data analysts and any other quantitatively oriented researchers who are new to the field of vine copulas. Accordingly, it provides the necessary background in multivariate statistics and copula theory for exploratory data tools, so that readers only need a basic grasp of statistics and probability.
Financial Risk Modelling and Portfolio Optimization with R
Author: Bernhard Pfaff
Publisher: John Wiley & Sons
ISBN: 1119119685
Category : Mathematics
Languages : en
Pages : 448
Book Description
Financial Risk Modelling and Portfolio Optimization with R, 2nd Edition Bernhard Pfaff, Invesco Global Asset Allocation, Germany A must have text for risk modelling and portfolio optimization using R. This book introduces the latest techniques advocated for measuring financial market risk and portfolio optimization, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. This edition has been extensively revised to include new topics on risk surfaces and probabilistic utility optimization as well as an extended introduction to R language. Financial Risk Modelling and Portfolio Optimization with R: Demonstrates techniques in modelling financial risks and applying portfolio optimization techniques as well as recent advances in the field. Introduces stylized facts, loss function and risk measures, conditional and unconditional modelling of risk; extreme value theory, generalized hyperbolic distribution, volatility modelling and concepts for capturing dependencies. Explores portfolio risk concepts and optimization with risk constraints. Is accompanied by a supporting website featuring examples and case studies in R. Includes updated list of R packages for enabling the reader to replicate the results in the book. Graduate and postgraduate students in finance, economics, risk management as well as practitioners in finance and portfolio optimization will find this book beneficial. It also serves well as an accompanying text in computer-lab classes and is therefore suitable for self-study.
Publisher: John Wiley & Sons
ISBN: 1119119685
Category : Mathematics
Languages : en
Pages : 448
Book Description
Financial Risk Modelling and Portfolio Optimization with R, 2nd Edition Bernhard Pfaff, Invesco Global Asset Allocation, Germany A must have text for risk modelling and portfolio optimization using R. This book introduces the latest techniques advocated for measuring financial market risk and portfolio optimization, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. This edition has been extensively revised to include new topics on risk surfaces and probabilistic utility optimization as well as an extended introduction to R language. Financial Risk Modelling and Portfolio Optimization with R: Demonstrates techniques in modelling financial risks and applying portfolio optimization techniques as well as recent advances in the field. Introduces stylized facts, loss function and risk measures, conditional and unconditional modelling of risk; extreme value theory, generalized hyperbolic distribution, volatility modelling and concepts for capturing dependencies. Explores portfolio risk concepts and optimization with risk constraints. Is accompanied by a supporting website featuring examples and case studies in R. Includes updated list of R packages for enabling the reader to replicate the results in the book. Graduate and postgraduate students in finance, economics, risk management as well as practitioners in finance and portfolio optimization will find this book beneficial. It also serves well as an accompanying text in computer-lab classes and is therefore suitable for self-study.
Machine Learning for Asset Management
Author: Emmanuel Jurczenko
Publisher: John Wiley & Sons
ISBN: 1786305445
Category : Business & Economics
Languages : en
Pages : 460
Book Description
This new edited volume consists of a collection of original articles written by leading financial economists and industry experts in the area of machine learning for asset management. The chapters introduce the reader to some of the latest research developments in the area of equity, multi-asset and factor investing. Each chapter deals with new methods for return and risk forecasting, stock selection, portfolio construction, performance attribution and transaction costs modeling. This volume will be of great help to portfolio managers, asset owners and consultants, as well as academics and students who want to improve their knowledge of machine learning in asset management.
Publisher: John Wiley & Sons
ISBN: 1786305445
Category : Business & Economics
Languages : en
Pages : 460
Book Description
This new edited volume consists of a collection of original articles written by leading financial economists and industry experts in the area of machine learning for asset management. The chapters introduce the reader to some of the latest research developments in the area of equity, multi-asset and factor investing. Each chapter deals with new methods for return and risk forecasting, stock selection, portfolio construction, performance attribution and transaction costs modeling. This volume will be of great help to portfolio managers, asset owners and consultants, as well as academics and students who want to improve their knowledge of machine learning in asset management.
Innovations in Quantitative Risk Management
Author: Kathrin Glau
Publisher: Springer
ISBN: 331909114X
Category : Mathematics
Languages : en
Pages : 434
Book Description
Quantitative models are omnipresent –but often controversially discussed– in todays risk management practice. New regulations, innovative financial products, and advances in valuation techniques provide a continuous flow of challenging problems for financial engineers and risk managers alike. Designing a sound stochastic model requires finding a careful balance between parsimonious model assumptions, mathematical viability, and interpretability of the output. Moreover, data requirements and the end-user training are to be considered as well. The KPMG Center of Excellence in Risk Management conference Risk Management Reloaded and this proceedings volume contribute to bridging the gap between academia –providing methodological advances– and practice –having a firm understanding of the economic conditions in which a given model is used. Discussed fields of application range from asset management, credit risk, and energy to risk management issues in insurance. Methodologically, dependence modeling, multiple-curve interest rate-models, and model risk are addressed. Finally, regulatory developments and possible limits of mathematical modeling are discussed.
Publisher: Springer
ISBN: 331909114X
Category : Mathematics
Languages : en
Pages : 434
Book Description
Quantitative models are omnipresent –but often controversially discussed– in todays risk management practice. New regulations, innovative financial products, and advances in valuation techniques provide a continuous flow of challenging problems for financial engineers and risk managers alike. Designing a sound stochastic model requires finding a careful balance between parsimonious model assumptions, mathematical viability, and interpretability of the output. Moreover, data requirements and the end-user training are to be considered as well. The KPMG Center of Excellence in Risk Management conference Risk Management Reloaded and this proceedings volume contribute to bridging the gap between academia –providing methodological advances– and practice –having a firm understanding of the economic conditions in which a given model is used. Discussed fields of application range from asset management, credit risk, and energy to risk management issues in insurance. Methodologically, dependence modeling, multiple-curve interest rate-models, and model risk are addressed. Finally, regulatory developments and possible limits of mathematical modeling are discussed.
Modern Portfolio Optimization with NuOPTTM, S-PLUS®, and S+BayesTM
Author: Bernd Scherer
Publisher: Springer Science & Business Media
ISBN: 038727586X
Category : Business & Economics
Languages : en
Pages : 422
Book Description
In recent years portfolio optimization and construction methodologies have become an increasingly critical ingredient of asset and fund management, while at the same time portfolio risk assessment has become an essential ingredient in risk management. This trend will only accelerate in the coming years. This practical handbook fills the gap between current university instruction and current industry practice. It provides a comprehensive computationally-oriented treatment of modern portfolio optimization and construction methods using the powerful NUOPT for S-PLUS optimizer.
Publisher: Springer Science & Business Media
ISBN: 038727586X
Category : Business & Economics
Languages : en
Pages : 422
Book Description
In recent years portfolio optimization and construction methodologies have become an increasingly critical ingredient of asset and fund management, while at the same time portfolio risk assessment has become an essential ingredient in risk management. This trend will only accelerate in the coming years. This practical handbook fills the gap between current university instruction and current industry practice. It provides a comprehensive computationally-oriented treatment of modern portfolio optimization and construction methods using the powerful NUOPT for S-PLUS optimizer.
Harry Markowitz
Author: Fouad Sabry
Publisher: One Billion Knowledgeable
ISBN:
Category : Business & Economics
Languages : en
Pages : 218
Book Description
Who is Harry Markowitz An American economist named Harry Max Markowitz was awarded the John von Neumann Theory Prize in 1989 and the Nobel Memorial Prize in Economic Sciences in 1990. He was also a recipient of both of these honors. How you will benefit (I) Insights about the following: Chapter 1: Harry Markowitz Chapter 2: Robert C. Merton Chapter 3: Capital asset pricing model Chapter 4: Merton Miller Chapter 5: William F. Sharpe Chapter 6: Modern portfolio theory Chapter 7: SIMSCRIPT Chapter 8: Roger G. Ibbotson Chapter 9: Diversification (finance) Chapter 10: Leonid Hurwicz Chapter 11: Post-modern portfolio theory Chapter 12: Finance Chapter 13: Portfolio manager Chapter 14: Andrew Lo Chapter 15: Maslowian portfolio theory Chapter 16: Portfolio optimization Chapter 17: Quantitative analysis (finance) Chapter 18: Downside risk Chapter 19: Mathematical finance Chapter 20: Index Fund Advisors Chapter 21: Philippe De Brouwer Who this book is for Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information about Harry Markowitz.
Publisher: One Billion Knowledgeable
ISBN:
Category : Business & Economics
Languages : en
Pages : 218
Book Description
Who is Harry Markowitz An American economist named Harry Max Markowitz was awarded the John von Neumann Theory Prize in 1989 and the Nobel Memorial Prize in Economic Sciences in 1990. He was also a recipient of both of these honors. How you will benefit (I) Insights about the following: Chapter 1: Harry Markowitz Chapter 2: Robert C. Merton Chapter 3: Capital asset pricing model Chapter 4: Merton Miller Chapter 5: William F. Sharpe Chapter 6: Modern portfolio theory Chapter 7: SIMSCRIPT Chapter 8: Roger G. Ibbotson Chapter 9: Diversification (finance) Chapter 10: Leonid Hurwicz Chapter 11: Post-modern portfolio theory Chapter 12: Finance Chapter 13: Portfolio manager Chapter 14: Andrew Lo Chapter 15: Maslowian portfolio theory Chapter 16: Portfolio optimization Chapter 17: Quantitative analysis (finance) Chapter 18: Downside risk Chapter 19: Mathematical finance Chapter 20: Index Fund Advisors Chapter 21: Philippe De Brouwer Who this book is for Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information about Harry Markowitz.
Introduction to Risk Parity and Budgeting
Author: Thierry Roncalli
Publisher: CRC Press
ISBN: 1482207168
Category : Business & Economics
Languages : en
Pages : 430
Book Description
Although portfolio management didn't change much during the 40 years after the seminal works of Markowitz and Sharpe, the development of risk budgeting techniques marked an important milestone in the deepening of the relationship between risk and asset management. Risk parity then became a popular financial model of investment after the global fina
Publisher: CRC Press
ISBN: 1482207168
Category : Business & Economics
Languages : en
Pages : 430
Book Description
Although portfolio management didn't change much during the 40 years after the seminal works of Markowitz and Sharpe, the development of risk budgeting techniques marked an important milestone in the deepening of the relationship between risk and asset management. Risk parity then became a popular financial model of investment after the global fina
FUZZY OPTIMIZATION FOR BUSINESS ANALYTICS AND DATA SCIENCE
Author: Dr. Parveen Chauhan
Publisher: Xoffencerpublication
ISBN: 811953428X
Category : Business & Economics
Languages : en
Pages : 303
Book Description
The concept of fuzzy logic refers to a specific subset of many-valued logic. In this line of reasoning, the truth value of a variable can be any real integer, including any fraction that is between 0 and 1. This applies to all fractions as well. It achieves this by regulating the concept of partial truth, in which the truth value may switch between being entirely true and entirely false at any given moment. This objective may be accomplished by making use of the tool for managing concepts. In contrast, the truth values of variables in Boolean logic can never be anything other than the integer values 0 or 1, as there are only two alternatives that even have a remote chance of occurring. This is because there are only two options that are even remotely imaginable. It is common practice to consider the fuzzy set theory, which was created in 1965 by the Iranian-Azerbaijani mathematician Lotfi Zadeh, to be the basis for fuzzy logic. However, since the 1920s, scholars have been investigating fuzzy logic, which was also known as infinite-valued logic at the time. Most notably, Lukasiewicz and Tarski were the researchers that began this line of inquiry. This particular investigation didn't wrap up until the 1960s, but it began in the 1920s. The idea of fuzzy logic is based on the fact that decision-makers frequently rely on hazy and non-numerical information. In other words, this is the origin of fuzzy logic. The mathematical methods of fuzzy modeling and fuzzy set creation, both of which are used to describe ambiguous and imprecise information, are where the name "fuzzy" first appeared. These models are capable of recognizing, representing, manipulating, understanding, and using facts and information that are fundamentally hazy and ambiguous in nature. Fuzzy logic has been effectively applied in a variety of applications, from control theory to artificial intelligence. Conventional patterns of thinking can only ever lead to conclusions that are either correct or incorrect. However, there are other statements that may elicit a range of responses, such as the answers you could get if you asked a group of individuals to name a color. One that invites people to name a meal is another 1 | P a ge illustration of this kind of proposal. In situations like this, it is the application of reasoning based on incomplete or inaccurate information that leads to the finding of the truth. This argument entails plotting the sampled responses on a spectrum. Although degrees of truth and probabilities both range from 0 to 1, fuzzy logic employs degrees of truth as a mathematical model of ambiguity whereas probability is a mathematical model of ignorance, despite the fact that they may initially appear to be the same. Although they could at first glance appear to be the same because both probability and degrees of truth range from 0 to 1, this is only because they do.
Publisher: Xoffencerpublication
ISBN: 811953428X
Category : Business & Economics
Languages : en
Pages : 303
Book Description
The concept of fuzzy logic refers to a specific subset of many-valued logic. In this line of reasoning, the truth value of a variable can be any real integer, including any fraction that is between 0 and 1. This applies to all fractions as well. It achieves this by regulating the concept of partial truth, in which the truth value may switch between being entirely true and entirely false at any given moment. This objective may be accomplished by making use of the tool for managing concepts. In contrast, the truth values of variables in Boolean logic can never be anything other than the integer values 0 or 1, as there are only two alternatives that even have a remote chance of occurring. This is because there are only two options that are even remotely imaginable. It is common practice to consider the fuzzy set theory, which was created in 1965 by the Iranian-Azerbaijani mathematician Lotfi Zadeh, to be the basis for fuzzy logic. However, since the 1920s, scholars have been investigating fuzzy logic, which was also known as infinite-valued logic at the time. Most notably, Lukasiewicz and Tarski were the researchers that began this line of inquiry. This particular investigation didn't wrap up until the 1960s, but it began in the 1920s. The idea of fuzzy logic is based on the fact that decision-makers frequently rely on hazy and non-numerical information. In other words, this is the origin of fuzzy logic. The mathematical methods of fuzzy modeling and fuzzy set creation, both of which are used to describe ambiguous and imprecise information, are where the name "fuzzy" first appeared. These models are capable of recognizing, representing, manipulating, understanding, and using facts and information that are fundamentally hazy and ambiguous in nature. Fuzzy logic has been effectively applied in a variety of applications, from control theory to artificial intelligence. Conventional patterns of thinking can only ever lead to conclusions that are either correct or incorrect. However, there are other statements that may elicit a range of responses, such as the answers you could get if you asked a group of individuals to name a color. One that invites people to name a meal is another 1 | P a ge illustration of this kind of proposal. In situations like this, it is the application of reasoning based on incomplete or inaccurate information that leads to the finding of the truth. This argument entails plotting the sampled responses on a spectrum. Although degrees of truth and probabilities both range from 0 to 1, fuzzy logic employs degrees of truth as a mathematical model of ambiguity whereas probability is a mathematical model of ignorance, despite the fact that they may initially appear to be the same. Although they could at first glance appear to be the same because both probability and degrees of truth range from 0 to 1, this is only because they do.
Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets
Author: Johan Hagenbjörk
Publisher: Linköping University Electronic Press
ISBN: 917929927X
Category :
Languages : sv
Pages : 156
Book Description
The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.
Publisher: Linköping University Electronic Press
ISBN: 917929927X
Category :
Languages : sv
Pages : 156
Book Description
The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.