Optimization-based Image Reconstruction in X-ray Computed Tomography by Sparsity Exploitation of Local Continuity and Nonlocal Spatial Self-similarity*Project Supported by the National Natural Science Foundation of China (Grant No. 61372172).

Optimization-based Image Reconstruction in X-ray Computed Tomography by Sparsity Exploitation of Local Continuity and Nonlocal Spatial Self-similarity*Project Supported by the National Natural Science Foundation of China (Grant No. 61372172). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract: The additional sparse prior of images has been the subject of much research in problems of sparse-view computed tomography (CT) reconstruction. A method employing the image gradient sparsity is often used to reduce the sampling rate and is shown to remove the unwanted artifacts while preserve sharp edges, but may cause blocky or patchy artifacts. To eliminate this drawback, we propose a novel sparsity exploitation-based model for CT image reconstruction. In the presented model, the sparse representation and sparsity exploitation of both gradient and nonlocal gradient are investigated. The new model is shown to offer the potential for better results by introducing a similarity prior information of the image structure. Then, an effective alternating direction minimization algorithm is developed to optimize the objective function with a robust convergence result. Qualitative and quantitative evaluations have been carried out both on the simulation and real data in terms of accuracy and resolution properties. The results indicate that the proposed method can be applied for achieving better image-quality potential with the theoretically expected detailed feature preservation.

Optimization-based Image Reconstruction in X-ray Computed Tomography by Sparsity Exploitation of Local Continuity and Nonlocal Spatial Self-similarity*Project Supported by the National Natural Science Foundation of China (Grant No. 61372172).

Optimization-based Image Reconstruction in X-ray Computed Tomography by Sparsity Exploitation of Local Continuity and Nonlocal Spatial Self-similarity*Project Supported by the National Natural Science Foundation of China (Grant No. 61372172). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract: The additional sparse prior of images has been the subject of much research in problems of sparse-view computed tomography (CT) reconstruction. A method employing the image gradient sparsity is often used to reduce the sampling rate and is shown to remove the unwanted artifacts while preserve sharp edges, but may cause blocky or patchy artifacts. To eliminate this drawback, we propose a novel sparsity exploitation-based model for CT image reconstruction. In the presented model, the sparse representation and sparsity exploitation of both gradient and nonlocal gradient are investigated. The new model is shown to offer the potential for better results by introducing a similarity prior information of the image structure. Then, an effective alternating direction minimization algorithm is developed to optimize the objective function with a robust convergence result. Qualitative and quantitative evaluations have been carried out both on the simulation and real data in terms of accuracy and resolution properties. The results indicate that the proposed method can be applied for achieving better image-quality potential with the theoretically expected detailed feature preservation.

Novel Fourier-based Iterative Reconstruction for Sparse Fan Projection Using Alternating Direction Total Variation Minimization*Projected Supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172).

Novel Fourier-based Iterative Reconstruction for Sparse Fan Projection Using Alternating Direction Total Variation Minimization*Projected Supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract: Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFT) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively.

3D Image Reconstruction for CT and PET

3D Image Reconstruction for CT and PET PDF Author: Daniele Panetta
Publisher: CRC Press
ISBN: 100017588X
Category : Medical
Languages : en
Pages : 97

Get Book Here

Book Description
This is a practical guide to tomographic image reconstruction with projection data, with strong focus on Computed Tomography (CT) and Positron Emission Tomography (PET). Classic methods such as FBP, ART, SIRT, MLEM and OSEM are presented with modern and compact notation, with the main goal of guiding the reader from the comprehension of the mathematical background through a fast-route to real practice and computer implementation of the algorithms. Accompanied by example data sets, real ready-to-run Python toolsets and scripts and an overview the latest research in the field, this guide will be invaluable for graduate students and early-career researchers and scientists in medical physics and biomedical engineering who are beginners in the field of image reconstruction. A top-down guide from theory to practical implementation of PET and CT reconstruction methods, without sacrificing the rigor of mathematical background Accompanied by Python source code snippets, suggested exercises, and supplementary ready-to-run examples for readers to download from the CRC Press website Ideal for those willing to move their first steps on the real practice of image reconstruction, with modern scientific programming language and toolsets Daniele Panetta is a researcher at the Institute of Clinical Physiology of the Italian National Research Council (CNR-IFC) in Pisa. He earned his MSc degree in Physics in 2004 and specialisation diploma in Health Physics in 2008, both at the University of Pisa. From 2005 to 2007, he worked at the Department of Physics "E. Fermi" of the University of Pisa in the field of tomographic image reconstruction for small animal imaging micro-CT instrumentation. His current research at CNR-IFC has as its goal the identification of novel PET/CT imaging biomarkers for cardiovascular and metabolic diseases. In the field micro-CT imaging, his interests cover applications of three-dimensional morphometry of biosamples and scaffolds for regenerative medicine. He acts as reviewer for scientific journals in the field of Medical Imaging: Physics in Medicine and Biology, Medical Physics, Physica Medica, and others. Since 2012, he is adjunct professor in Medical Physics at the University of Pisa. Niccolò Camarlinghi is a researcher at the University of Pisa. He obtained his MSc in Physics in 2007 and his PhD in Applied Physics in 2012. He has been working in the field of Medical Physics since 2008 and his main research fields are medical image analysis and image reconstruction. He is involved in the development of clinical, pre-clinical PET and hadron therapy monitoring scanners. At the time of writing this book he was a lecturer at University of Pisa, teaching courses of life-sciences and medical physics laboratory. He regularly acts as a referee for the following journals: Medical Physics, Physics in Medicine and Biology, Transactions on Medical Imaging, Computers in Biology and Medicine, Physica Medica, EURASIP Journal on Image and Video Processing, Journal of Biomedical and Health Informatics.

Image Reconstruction from Projections

Image Reconstruction from Projections PDF Author: Gabor T. Herman
Publisher:
ISBN:
Category : Medical
Languages : en
Pages : 352

Get Book Here

Book Description
Image reconstruction from projections. Probability and random variables. An overview of the process of CT. Physical problems associated with data collection in CT. Computer simulation of data collection in CT. Data collection and reconstruction of the head phantom under various assumptions. Basic concepts of reconstruction algorithms. Backprojection. Convolution method for parallel beams. Other transform methods for parallel beams. Convolution methods for divergent beams. The algebraic reconstruction techniques. Quadratic optimization methods. Noniterative series expansion methods. Truly three-dimensional reconstruction. Three-dimensional display of organs. Mathematical background.

Fast Parallel Algorithm for Three-dimensional Distance-driven Model in Iterative Computed Tomography Reconstruction *Projected Supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172).

Fast Parallel Algorithm for Three-dimensional Distance-driven Model in Iterative Computed Tomography Reconstruction *Projected Supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract: The projection matrix model is used to describe the physical relationship between reconstructed object and projection. Such a model has a strong influence on projection and backprojection, two vital operations in iterative computed tomographic reconstruction. The distance-driven model (DDM) is a state-of-the-art technology that simulates forward and back projections. This model has a low computational complexity and a relatively high spatial resolution; however, it includes only a few methods in a parallel operation with a matched model scheme. This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations. Our proposed model has been implemented on a GPU (graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation. The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop, respectively, with an image size of 256×256×256 and 360 projections with a size of 512×512. We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation. The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction.

Statistical Iterative Reconstruction and Dose Reduction in Multi-Slice Computed Tomography

Statistical Iterative Reconstruction and Dose Reduction in Multi-Slice Computed Tomography PDF Author: Katharina Hahn
Publisher:
ISBN: 9783832554439
Category :
Languages : en
Pages : 206

Get Book Here

Book Description
Computed tomography is one of the most important imaging methods in medical technology. Although computed tomography examinations only make up a small proportion of X-ray examinations, they do make a great contribution to civilizing radiation exposure of the population. By using statistical iterative reconstruction methods, it is possible to reduce the mean radiation dose per examination. While statistical iterative reconstruction methods enable the modeling of physical imaging properties, the user can decide freely and independently about the choice of numerous free parameters. However, every parameterization decision has an influence on the final image quality. In this work, inter alia the definition of the modeling of the forward projection is examined as well as the influence of statistical weights and data redundancies in interaction with various iterative reconstruction techniques. Several extensive studies were put together, which challenge these different combinations in every respect and push the models to their limits. Image quality was assessed using the following quantitative metrics: basic metrics and task-based metrics. The investigation shows that the definition of iterative reconstruction parameters is not always trivial and must always be understood comprehensively to obtain an optimal image quality. Finally, a novel reconstruction algorithm, called FINESSE, is presented, which improves some of the weaknesses of other reconstruction techniques.

Statistical Modeling and Path-based Iterative Reconstruction for X-ray Computed Tomography

Statistical Modeling and Path-based Iterative Reconstruction for X-ray Computed Tomography PDF Author: Meng Wu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
X-ray computed tomography (CT) and tomosynthesis systems have proven to be indispensable components in medical diagnosis and treatment. My research is to develop advanced image reconstruction and processing algorithms for the CT and tomosynthesis systems. Streak artifacts caused by metal objects such as dental fillings, surgical instruments, and orthopedic hardware may obscure important diagnostic information in X-ray computed tomography (CT) images. To improve the image quality, we proposed to complete the missing kilovoltage (kV) projection data with selectively acquired megavoltage (MV) data that do not suffer from photon starvation. We developed two statistical image reconstruction methods, dual-energy penalized weighted least squares and polychromatic maximum likelihood, for combining kV and selective MV data. Cramer-Rao Lower Bound for Compound Poisson was studied to revise the statistical model and minimize radiation dose. Numerical simulations and phantom studies have shown that the combined kV/MV imaging systems enable a better delineation of structures of interest in CT images for patients with metal objects. The x-ray tube on the CT system produces a wide x-ray spectrum. Polychromatic statistical CT reconstruction is desired for more accurate quantitative measurement of the chemical composition and density of the tissue. Polychromatic statistical reconstruction algorithms usually have very high computational demands due to complicated optimization frameworks and the large number of spectrum bins. We proposed a spectrum information compression method and a new optimization framework to significantly reduce the computational cost in reconstructions. The new algorithm applies to multi-material beam hardening correction, adaptive exposure control, and spectral imaging. Model-based iterative reconstruction (MBIR) techniques have demonstrated many advantages in X-ray CT image reconstruction. The MBIR approach is often modeled as a convex optimization problem including a data fitting function and a penalty function. The tuning parameter value that regulates the strength of the penalty function is critical for achieving good reconstruction results but is difficult to choose. We have developed two path seeking algorithms that are capable of generating a path of MBIR images with different strengths of the penalty function. The errors of the proposed path seeking algorithms are reasonably small throughout the entire reconstruction path. With the efficient path seeking algorithm, we suggested a path-based iterative reconstruction (PBIR) to obtain complete information from the scanned data and reconstruction model. Additionally, we have developed a convolution-based blur-and-add model for digital tomosynthesis systems that can be used in efficient system analysis, task-dependent optimization, and filter design. We also proposed a computationally practical algorithm to simulate and subtract out-of-plane artifacts in tomosynthesis images using patient-specific prior CT volumes.