Author: Changhyun Kwon
Publisher: Changhyun Kwon
ISBN: 1798205475
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia
Julia Programming for Operations Research
Author: Changhyun Kwon
Publisher: Changhyun Kwon
ISBN: 1798205475
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia
Publisher: Changhyun Kwon
ISBN: 1798205475
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia
Optimization in Operations Research
Author: Ronald L. Rardin
Publisher: Prentice Hall
ISBN: 9780132858113
Category : Mathematical optimization
Languages : en
Pages : 936
Book Description
For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.
Publisher: Prentice Hall
ISBN: 9780132858113
Category : Mathematical optimization
Languages : en
Pages : 936
Book Description
For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.
OPTIMIZATION AND OPERATIONS RESEARCH – Volume II
Author: Ulrich Derigs
Publisher: EOLSS Publications
ISBN: 1905839499
Category :
Languages : en
Pages : 336
Book Description
Optimization and Operations Research is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Optimization and Operations Research is organized into six different topics which represent the main scientific areas of the theme: 1. Fundamentals of Operations Research; 2. Advanced Deterministic Operations Research; 3. Optimization in Infinite Dimensions; 4. Game Theory; 5. Stochastic Operations Research; 6. Decision Analysis, which are then expanded into multiple subtopics, each as a chapter. These four volumes are aimed at the following five major target audiences: University and College students Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.
Publisher: EOLSS Publications
ISBN: 1905839499
Category :
Languages : en
Pages : 336
Book Description
Optimization and Operations Research is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Optimization and Operations Research is organized into six different topics which represent the main scientific areas of the theme: 1. Fundamentals of Operations Research; 2. Advanced Deterministic Operations Research; 3. Optimization in Infinite Dimensions; 4. Game Theory; 5. Stochastic Operations Research; 6. Decision Analysis, which are then expanded into multiple subtopics, each as a chapter. These four volumes are aimed at the following five major target audiences: University and College students Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.
Advanced Optimization and Operations Research
Author: Asoke Kumar Bhunia
Publisher: Springer Nature
ISBN: 9813299673
Category : Business & Economics
Languages : en
Pages : 626
Book Description
This textbook provides students with fundamentals and advanced concepts in optimization and operations research. It gives an overview of the historical perspective of operations research and explains its principal characteristics, tools, and applications. The wide range of topics covered includes convex and concave functions, simplex methods, post optimality analysis of linear programming problems, constrained and unconstrained optimization, game theory, queueing theory, and related topics. The text also elaborates on project management, including the importance of critical path analysis, PERT and CPM techniques. This textbook is ideal for any discipline with one or more courses in optimization and operations research; it may also provide a solid reference for researchers and practitioners in operations research.
Publisher: Springer Nature
ISBN: 9813299673
Category : Business & Economics
Languages : en
Pages : 626
Book Description
This textbook provides students with fundamentals and advanced concepts in optimization and operations research. It gives an overview of the historical perspective of operations research and explains its principal characteristics, tools, and applications. The wide range of topics covered includes convex and concave functions, simplex methods, post optimality analysis of linear programming problems, constrained and unconstrained optimization, game theory, queueing theory, and related topics. The text also elaborates on project management, including the importance of critical path analysis, PERT and CPM techniques. This textbook is ideal for any discipline with one or more courses in optimization and operations research; it may also provide a solid reference for researchers and practitioners in operations research.
Integrated Methods for Optimization
Author: John N. Hooker
Publisher: Springer Science & Business Media
ISBN: 146141900X
Category : Business & Economics
Languages : en
Pages : 655
Book Description
The first edition of Integrated Methods for Optimization was published in January 2007. Because the book covers a rapidly developing field, the time is right for a second edition. The book provides a unified treatment of optimization methods. It brings ideas from mathematical programming (MP), constraint programming (CP), and global optimization (GO)into a single volume. There is no reason these must be learned as separate fields, as they normally are, and there are three reasons they should be studied together. (1) There is much in common among them intellectually, and to a large degree they can be understood as special cases of a single underlying solution technology. (2) A growing literature reports how they can be profitably integrated to formulate and solve a wide range of problems. (3) Several software packages now incorporate techniques from two or more of these fields. The book provides a unique resource for graduate students and practitioners who want a well-rounded background in optimization methods within a single course of study. Engineering students are a particularly large potential audience, because engineering optimization problems often benefit from a combined approach—particularly where design, scheduling, or logistics are involved. The text is also of value to those studying operations research, because their educational programs rarely cover CP, and to those studying computer science and artificial intelligence (AI), because their curric ula typically omit MP and GO. The text is also useful for practitioners in any of these areas who want to learn about another, because it provides a more concise and accessible treatment than other texts. The book can cover so wide a range of material because it focuses on ideas that arerelevant to the methods used in general-purpose optimization and constraint solvers. The book focuses on ideas behind the methods that have proved useful in general-purpose optimization and constraint solvers, as well as integrated solvers of the present and foreseeable future. The second edition updates results in this area and includes several major new topics: Background material in linear, nonlinear, and dynamic programming. Network flow theory, due to its importance in filtering algorithms. A chapter on generalized duality theory that more explicitly develops a unifying primal-dual algorithmic structure for optimization methods. An extensive survey of search methods from both MP and AI, using the primal-dual framework as an organizing principle. Coverage of several additional global constraints used in CP solvers. The book continues to focus on exact as opposed to heuristic methods. It is possible to bring heuristic methods into the unifying scheme described in the book, and the new edition will retain the brief discussion of how this might be done.
Publisher: Springer Science & Business Media
ISBN: 146141900X
Category : Business & Economics
Languages : en
Pages : 655
Book Description
The first edition of Integrated Methods for Optimization was published in January 2007. Because the book covers a rapidly developing field, the time is right for a second edition. The book provides a unified treatment of optimization methods. It brings ideas from mathematical programming (MP), constraint programming (CP), and global optimization (GO)into a single volume. There is no reason these must be learned as separate fields, as they normally are, and there are three reasons they should be studied together. (1) There is much in common among them intellectually, and to a large degree they can be understood as special cases of a single underlying solution technology. (2) A growing literature reports how they can be profitably integrated to formulate and solve a wide range of problems. (3) Several software packages now incorporate techniques from two or more of these fields. The book provides a unique resource for graduate students and practitioners who want a well-rounded background in optimization methods within a single course of study. Engineering students are a particularly large potential audience, because engineering optimization problems often benefit from a combined approach—particularly where design, scheduling, or logistics are involved. The text is also of value to those studying operations research, because their educational programs rarely cover CP, and to those studying computer science and artificial intelligence (AI), because their curric ula typically omit MP and GO. The text is also useful for practitioners in any of these areas who want to learn about another, because it provides a more concise and accessible treatment than other texts. The book can cover so wide a range of material because it focuses on ideas that arerelevant to the methods used in general-purpose optimization and constraint solvers. The book focuses on ideas behind the methods that have proved useful in general-purpose optimization and constraint solvers, as well as integrated solvers of the present and foreseeable future. The second edition updates results in this area and includes several major new topics: Background material in linear, nonlinear, and dynamic programming. Network flow theory, due to its importance in filtering algorithms. A chapter on generalized duality theory that more explicitly develops a unifying primal-dual algorithmic structure for optimization methods. An extensive survey of search methods from both MP and AI, using the primal-dual framework as an organizing principle. Coverage of several additional global constraints used in CP solvers. The book continues to focus on exact as opposed to heuristic methods. It is possible to bring heuristic methods into the unifying scheme described in the book, and the new edition will retain the brief discussion of how this might be done.
Deterministic Operations Research
Author: David J. Rader
Publisher: John Wiley & Sons
ISBN: 1118627350
Category : Mathematics
Languages : en
Pages : 631
Book Description
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations research: modeling real-world problems as linear optimization problem; designing the necessary algorithms to solve these problems; and using mathematical theory to justify algorithmic development. Treating real-world examples as mathematical problems, the author begins with an introduction to operations research and optimization modeling that includes applications form sports scheduling an the airline industry. Subsequent chapters discuss algorithm design for continuous linear optimization problems, covering topics such as convexity. Farkas’ Lemma, and the study of polyhedral before culminating in a discussion of the Simplex Method. The book also addresses linear programming duality theory and its use in algorithm design as well as the Dual Simplex Method. Dantzig-Wolfe decomposition, and a primal-dual interior point algorithm. The final chapters present network optimization and integer programming problems, highlighting various specialized topics including label-correcting algorithms for the shortest path problem, preprocessing and probing in integer programming, lifting of valid inequalities, and branch and cut algorithms. Concepts and approaches are introduced by outlining examples that demonstrate and motivate theoretical concepts. The accessible presentation of advanced ideas makes core aspects easy to understand and encourages readers to understand how to think about the problem, not just what to think. Relevant historical summaries can be found throughout the book, and each chapter is designed as the continuation of the “story” of how to both model and solve optimization problems by using the specific problems-linear and integer programs-as guides. The book’s various examples are accompanied by the appropriate models and calculations, and a related Web site features these models along with MapleTM and MATLAB® content for the discussed calculations. Thoroughly class-tested to ensure a straightforward, hands-on approach, Deterministic Operations Research is an excellent book for operations research of linear optimization courses at the upper-undergraduate and graduate levels. It also serves as an insightful reference for individuals working in the fields of mathematics, engineering, computer science, and operations research who use and design algorithms to solve problem in their everyday work.
Publisher: John Wiley & Sons
ISBN: 1118627350
Category : Mathematics
Languages : en
Pages : 631
Book Description
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations research: modeling real-world problems as linear optimization problem; designing the necessary algorithms to solve these problems; and using mathematical theory to justify algorithmic development. Treating real-world examples as mathematical problems, the author begins with an introduction to operations research and optimization modeling that includes applications form sports scheduling an the airline industry. Subsequent chapters discuss algorithm design for continuous linear optimization problems, covering topics such as convexity. Farkas’ Lemma, and the study of polyhedral before culminating in a discussion of the Simplex Method. The book also addresses linear programming duality theory and its use in algorithm design as well as the Dual Simplex Method. Dantzig-Wolfe decomposition, and a primal-dual interior point algorithm. The final chapters present network optimization and integer programming problems, highlighting various specialized topics including label-correcting algorithms for the shortest path problem, preprocessing and probing in integer programming, lifting of valid inequalities, and branch and cut algorithms. Concepts and approaches are introduced by outlining examples that demonstrate and motivate theoretical concepts. The accessible presentation of advanced ideas makes core aspects easy to understand and encourages readers to understand how to think about the problem, not just what to think. Relevant historical summaries can be found throughout the book, and each chapter is designed as the continuation of the “story” of how to both model and solve optimization problems by using the specific problems-linear and integer programs-as guides. The book’s various examples are accompanied by the appropriate models and calculations, and a related Web site features these models along with MapleTM and MATLAB® content for the discussed calculations. Thoroughly class-tested to ensure a straightforward, hands-on approach, Deterministic Operations Research is an excellent book for operations research of linear optimization courses at the upper-undergraduate and graduate levels. It also serves as an insightful reference for individuals working in the fields of mathematics, engineering, computer science, and operations research who use and design algorithms to solve problem in their everyday work.
Mathematics for Operations Research
Author: W. H. Marlow
Publisher: Courier Corporation
ISBN: 0486677230
Category : Mathematics
Languages : en
Pages : 514
Book Description
Practical and applications-oriented, this text explains effective procedures for performing mathematical tasks that arise in many fields, including operations research, engineering, systems sciences, statistics, and economics. Most of the examples and many of the 1,300 problems illustrate techniques, and nearly all of the tables display reference material for procedures. 1978 edition.
Publisher: Courier Corporation
ISBN: 0486677230
Category : Mathematics
Languages : en
Pages : 514
Book Description
Practical and applications-oriented, this text explains effective procedures for performing mathematical tasks that arise in many fields, including operations research, engineering, systems sciences, statistics, and economics. Most of the examples and many of the 1,300 problems illustrate techniques, and nearly all of the tables display reference material for procedures. 1978 edition.
Operations Research
Author: Wayne L. Winston
Publisher: Duxbury Resource Center
ISBN:
Category : Business & Economics
Languages : en
Pages : 1050
Book Description
Publisher: Duxbury Resource Center
ISBN:
Category : Business & Economics
Languages : en
Pages : 1050
Book Description
Multiple Criteria Optimization
Author: Xavier Gandibleux
Publisher: Springer Science & Business Media
ISBN: 0306481073
Category : Business & Economics
Languages : en
Pages : 515
Book Description
The generalized area of multiple criteria decision making (MCDM) can be defined as the body of methods and procedures by which the concern for multiple conflicting criteria can be formally incorporated into the analytical process. MCDM consists mostly of two branches, multiple criteria optimization and multi-criteria decision analysis (MCDA). While MCDA is typically concerned with multiple criteria problems that have a small number of alternatives often in an environment of uncertainty (location of an airport, type of drug rehabilitation program), multiple criteria optimization is typically directed at problems formulated within a mathematical programming framework, but with a stack of objectives instead of just one (river basin management, engineering component design, product distribution). It is about the most modern treatment of multiple criteria optimization that this book is concerned. I look at this book as a nicely organized and well-rounded presentation of what I view as ”new wave” topics in multiple criteria optimization. Looking back to the origins of MCDM, most people agree that it was not until about the early 1970s that multiple criteria optimization c- gealed as a field. At this time, and for about the following fifteen years, the focus was on theories of multiple objective linear programming that subsume conventional (single criterion) linear programming, algorithms for characterizing the efficient set, theoretical vector-maximum dev- opments, and interactive procedures.
Publisher: Springer Science & Business Media
ISBN: 0306481073
Category : Business & Economics
Languages : en
Pages : 515
Book Description
The generalized area of multiple criteria decision making (MCDM) can be defined as the body of methods and procedures by which the concern for multiple conflicting criteria can be formally incorporated into the analytical process. MCDM consists mostly of two branches, multiple criteria optimization and multi-criteria decision analysis (MCDA). While MCDA is typically concerned with multiple criteria problems that have a small number of alternatives often in an environment of uncertainty (location of an airport, type of drug rehabilitation program), multiple criteria optimization is typically directed at problems formulated within a mathematical programming framework, but with a stack of objectives instead of just one (river basin management, engineering component design, product distribution). It is about the most modern treatment of multiple criteria optimization that this book is concerned. I look at this book as a nicely organized and well-rounded presentation of what I view as ”new wave” topics in multiple criteria optimization. Looking back to the origins of MCDM, most people agree that it was not until about the early 1970s that multiple criteria optimization c- gealed as a field. At this time, and for about the following fifteen years, the focus was on theories of multiple objective linear programming that subsume conventional (single criterion) linear programming, algorithms for characterizing the efficient set, theoretical vector-maximum dev- opments, and interactive procedures.
Optimization in Industry
Author: T.A.J. Nicholson
Publisher: Routledge
ISBN: 1351501399
Category : Business & Economics
Languages : en
Pages : 293
Book Description
The origin of any industrial optimization study lies in the theory that some improvement can be made in a controllable system. The possibility for improvements may arise in any context, for example, in the control of a chemical plant, the organization of production to meet delivery dates, the design of rubber compounds, in traffic signal settings, and so on. In this volume, T. A. J. Nicholson deals with applications of the industrial optimization techniques demonstrated in the first volume of this two-part project, Optimization in Industry: Optimization Techniques.Applications are classified by their main functional areas in industrial planning, design, and control. The fields covered are machine sequencing, stock control and scheduling, plant renewal, distribution, financial problems, and chemical process control and design. These last two, in particular, are subjects often overlooked in operations research curricula. In each field the place and status of optimization techniques is first described and then a wide range of realistic case studies and examples are reviewed, many of them international. The problems given in this volume are primarily concerned with formulation not with solution; the task is to formulate the problems to be solved by one or more of the methods described in volume one.By connecting the optimization techniques with their applications, the gap between the people devising the methods and the people who actually need to use them is bridged. As with the first volume, this text is also supported by new exercises and model answers making this book important as an introduction to the application of optimization techniques for students as well as a reference work for the practitioner.
Publisher: Routledge
ISBN: 1351501399
Category : Business & Economics
Languages : en
Pages : 293
Book Description
The origin of any industrial optimization study lies in the theory that some improvement can be made in a controllable system. The possibility for improvements may arise in any context, for example, in the control of a chemical plant, the organization of production to meet delivery dates, the design of rubber compounds, in traffic signal settings, and so on. In this volume, T. A. J. Nicholson deals with applications of the industrial optimization techniques demonstrated in the first volume of this two-part project, Optimization in Industry: Optimization Techniques.Applications are classified by their main functional areas in industrial planning, design, and control. The fields covered are machine sequencing, stock control and scheduling, plant renewal, distribution, financial problems, and chemical process control and design. These last two, in particular, are subjects often overlooked in operations research curricula. In each field the place and status of optimization techniques is first described and then a wide range of realistic case studies and examples are reviewed, many of them international. The problems given in this volume are primarily concerned with formulation not with solution; the task is to formulate the problems to be solved by one or more of the methods described in volume one.By connecting the optimization techniques with their applications, the gap between the people devising the methods and the people who actually need to use them is bridged. As with the first volume, this text is also supported by new exercises and model answers making this book important as an introduction to the application of optimization techniques for students as well as a reference work for the practitioner.