Optimal Subset Selection

Optimal Subset Selection PDF Author: David Boyce
Publisher: Springer Science & Business Media
ISBN: 3642463118
Category : Mathematics
Languages : en
Pages : 203

Get Book Here

Book Description
In the course of one's research, the expediency of meeting contractual and other externally imposed deadlines too often seems to take priority over what may be more significant research findings in the longer run. Such is the case with this volume which, despite our best intentions, has been put aside time and again since 1971 in favor of what seemed to be more urgent matters. Despite this delay, to our knowledge the principal research results and documentation presented here have not been superseded by other publications. The background of this endeavor may be of some historical interest, especially to those who agree that research is not a straightforward, mechanistic process whose outcome or even direction is known in ad vance. In the process of this brief recounting, we would like to express our gratitude to those individuals and organizations who facilitated and supported our efforts. We were introduced to the Beale, Kendall and Mann algorithm, the source of all our efforts, quite by chance. Professor Britton Harris suggested to me in April 1967 that I might like to attend a CEIR half-day seminar on optimal regression being given by Professor M. G. Kendall in Washington. D. C. I agreed that the topic seemed interesting and went along. Had it not been for Harris' suggestion and financial support, this work almost certainly would have never begun.

Optimal Subset Selection

Optimal Subset Selection PDF Author: David Boyce
Publisher: Springer Science & Business Media
ISBN: 3642463118
Category : Mathematics
Languages : en
Pages : 203

Get Book Here

Book Description
In the course of one's research, the expediency of meeting contractual and other externally imposed deadlines too often seems to take priority over what may be more significant research findings in the longer run. Such is the case with this volume which, despite our best intentions, has been put aside time and again since 1971 in favor of what seemed to be more urgent matters. Despite this delay, to our knowledge the principal research results and documentation presented here have not been superseded by other publications. The background of this endeavor may be of some historical interest, especially to those who agree that research is not a straightforward, mechanistic process whose outcome or even direction is known in ad vance. In the process of this brief recounting, we would like to express our gratitude to those individuals and organizations who facilitated and supported our efforts. We were introduced to the Beale, Kendall and Mann algorithm, the source of all our efforts, quite by chance. Professor Britton Harris suggested to me in April 1967 that I might like to attend a CEIR half-day seminar on optimal regression being given by Professor M. G. Kendall in Washington. D. C. I agreed that the topic seemed interesting and went along. Had it not been for Harris' suggestion and financial support, this work almost certainly would have never begun.

Machine Learning Under a Modern Optimization Lens

Machine Learning Under a Modern Optimization Lens PDF Author: Dimitris Bertsimas
Publisher:
ISBN: 9781733788502
Category : Machine learning
Languages : en
Pages : 589

Get Book Here

Book Description


Feature Engineering and Selection

Feature Engineering and Selection PDF Author: Max Kuhn
Publisher: CRC Press
ISBN: 1351609467
Category : Business & Economics
Languages : en
Pages : 266

Get Book Here

Book Description
The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.

Feature Extraction, Construction and Selection

Feature Extraction, Construction and Selection PDF Author: Huan Liu
Publisher: Springer Science & Business Media
ISBN: 1461557259
Category : Computers
Languages : en
Pages : 418

Get Book Here

Book Description
There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-art techniques that can boost the capabilities of many existing data mining tools. The objective of this collection is to increase the awareness of the data mining community about the research of feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of our endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches. Even with today's advanced computer technologies, discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Feature extraction, construction and selection are a set of techniques that transform and simplify data so as to make data mining tasks easier. Feature construction and selection can be viewed as two sides of the representation problem.

Subset Selection in Regression

Subset Selection in Regression PDF Author: Alan Miller
Publisher: CRC Press
ISBN: 1420035932
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author ha

Forecasting: principles and practice

Forecasting: principles and practice PDF Author: Rob J Hyndman
Publisher: OTexts
ISBN: 0987507117
Category : Business & Economics
Languages : en
Pages : 380

Get Book Here

Book Description
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Evolutionary Learning: Advances in Theories and Algorithms

Evolutionary Learning: Advances in Theories and Algorithms PDF Author: Zhi-Hua Zhou
Publisher: Springer
ISBN: 9811359563
Category : Computers
Languages : en
Pages : 361

Get Book Here

Book Description
Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches. Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary optimization, such as recombination, representation, inaccurate fitness evaluation, and population. In closing, Part IV addresses the development of evolutionary learning algorithms with provable theoretical guarantees for several representative tasks, in which evolutionary learning offers excellent performance.

Optimal Learning

Optimal Learning PDF Author: Warren B. Powell
Publisher: John Wiley & Sons
ISBN: 1118309847
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
Learn the science of collecting information to make effective decisions Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and expensive. Designed for readers with an elementary background in probability and statistics, the book presents effective and practical policies illustrated in a wide range of applications, from energy, homeland security, and transportation to engineering, health, and business. This book covers the fundamental dimensions of a learning problem and presents a simple method for testing and comparing policies for learning. Special attention is given to the knowledge gradient policy and its use with a wide range of belief models, including lookup table and parametric and for online and offline problems. Three sections develop ideas with increasing levels of sophistication: Fundamentals explores fundamental topics, including adaptive learning, ranking and selection, the knowledge gradient, and bandit problems Extensions and Applications features coverage of linear belief models, subset selection models, scalar function optimization, optimal bidding, and stopping problems Advanced Topics explores complex methods including simulation optimization, active learning in mathematical programming, and optimal continuous measurements Each chapter identifies a specific learning problem, presents the related, practical algorithms for implementation, and concludes with numerous exercises. A related website features additional applications and downloadable software, including MATLAB and the Optimal Learning Calculator, a spreadsheet-based package that provides an introduction to learning and a variety of policies for learning.

Statistical Learning with Sparsity

Statistical Learning with Sparsity PDF Author: Trevor Hastie
Publisher: CRC Press
ISBN: 1498712177
Category : Business & Economics
Languages : en
Pages : 354

Get Book Here

Book Description
Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Teaching Learning Based Optimization Algorithm

Teaching Learning Based Optimization Algorithm PDF Author: R. Venkata Rao
Publisher: Springer
ISBN: 3319227327
Category : Technology & Engineering
Languages : en
Pages : 291

Get Book Here

Book Description
Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.