Optimal Control of Wave Energy Converters

Optimal Control of Wave Energy Converters PDF Author: Giorgio Bacelli
Publisher:
ISBN:
Category : Electronic Engineering Theses
Languages : en
Pages : 412

Get Book Here

Book Description

Optimal Control of Wave Energy Converters

Optimal Control of Wave Energy Converters PDF Author: Giorgio Bacelli
Publisher:
ISBN:
Category : Electronic Engineering Theses
Languages : en
Pages : 412

Get Book Here

Book Description


Optimal Control of Wave Energy Converters

Optimal Control of Wave Energy Converters PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract : In this dissertation, we address the optimal control of the Wave Energy Converters. The Wave Energy Converters introduced in this study can be categorized as the single body heaving device, the single body pitching device, the single body three degrees of freedoms device, and the Wave Energy Converters array. Different types of Wave Energy Converters are modeled mathematically, and different optimal controls are developed for them. The objective of the optimal controllers is to maximize the energy extraction with and without the motion and control constraints. The development of the unconstrained control is first introduced which includes the implementation of the Singular Arc control and the Simple Model Control. The constrained optimal control is then introduced which contains the Shape-based approach, Pseudospectral control, the Linear Quadratic Gaussian optimal control, and the Collective Control. The wave estimation is also discussed since it is required by the controllers. Several estimators are implemented, such as the Kalman Filter, the Extended Kalman Filter, and the Kalman-Consensus Filter. They can be applied for estimating the system states and the wave excitation force/wave excitation force field. Last, the controllers are validated with the Discrete Displacement Hydraulic system which is the Power Take-off unit of the Wave Energy Converter. The simulation results show that the proposed optimal controllers can maximize the energy absorption when the wave estimation is accurate. The performance of the unconstrained controllers is close to the theoretical maximum (Complex Conjugate Control). Furthermore, the energy extraction is optimized and the constraints are satisfied by applying the constrained controllers. However, when the proposed controllers are further validated with the hydraulic system, they extract less energy than a simple Proportional-derivative control. This indicates the dynamics of the Power take-off unit needs to be considered in designing the control to obtain the robustness.

Hydrodynamic Control of Wave Energy Devices

Hydrodynamic Control of Wave Energy Devices PDF Author: Umesh A. Korde
Publisher: Cambridge University Press
ISBN: 1316720640
Category : Technology & Engineering
Languages : en
Pages : 385

Get Book Here

Book Description
With this self-contained and comprehensive text, students and researchers will gain a detailed understanding of the fundamental aspects of the hydrodynamic control of wave energy converters. Such control is necessary to maximise energy capture for a given device configuration and plays a major role in efforts to make wave energy economic. Covering a wide range of disciplines, the reader is taken from the mathematical and technical fundamentals, through the main pillars of wave energy hydrodynamic control, right through to state-of-the-art algorithms for hydrodynamic control. The various operating principles of wave energy converters are exposed and the unique aspects of the hydrodynamic control problem highlighted, with a variety of potential solutions discussed. Supporting material on wave forecasting and the interaction of the hydrodynamic control problem with other aspects of wave energy device optimisation, such as device geometry optimisation and optimal device array layout, is also provided.

Optimal Control for Wave Energy Converters

Optimal Control for Wave Energy Converters PDF Author: Juan Luis Guerrero Fernández
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Ocean Waves and Oscillating Systems

Ocean Waves and Oscillating Systems PDF Author: Johannes Falnes
Publisher: Cambridge University Press
ISBN: 1108481663
Category : Science
Languages : en
Pages : 319

Get Book Here

Book Description
Understand the absorption of energy from ocean waves by means of oscillating systems with this useful new edition. Essential for engineers, researchers, and graduate students, and an indispensable tool for those who work in this field.

Handbook of Ocean Wave Energy

Handbook of Ocean Wave Energy PDF Author: Arthur Pecher
Publisher: Springer
ISBN: 331939889X
Category : Technology & Engineering
Languages : en
Pages : 305

Get Book Here

Book Description
This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

Optimal Control and Robust Estimation for Ocean Wave Energy Converters

Optimal Control and Robust Estimation for Ocean Wave Energy Converters PDF Author: Edo Abraham
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis deals with the optimal control of wave energy converters and some associated observer design problems. The first part of the thesis will investigate model predictive control of an ocean wave energy converter to maximize extracted power. A generic heaving converter that can have both linear dampers and active elements as a power take-off system is considered and an efficient optimal control algorithm is developed for use within a receding horizon control framework. The optimal control is also characterized analytically. A direct transcription of the optimal control problem is also considered as a general nonlinear program. A variation of the projected gradient optimization scheme is formulated and shown to be feasible and computationally inexpensive compared to a standard nonlinear program solver. Since the system model is bilinear and the cost function is not convex quadratic, the resulting optimization problem is shown not to be a quadratic program. Results are compared with other methods like optimal latching to demonstrate the improvement in absorbed power under irregular sea condition simulations. In the second part, robust estimation of the radiation forces and states inherent in the optimal control of wave energy converters is considered. Motivated by this, low order H∞ observer design for bilinear systems with input constraints is investigated and numerically tractable methods for design are developed. A bilinear Luenberger type observer is formulated and the resulting synthesis problem reformulated as that for a linear parameter varying system. A bilinear matrix inequality problem is then solved to find nominal and robust quadratically stable observers. The performance of these observers is compared with that of an extended Kalman filter. The robustness of the observers to parameter uncertainty and to variation in the radiation subsystem model order is also investigated. This thesis also explores the numerical integration of bilinear control systems with zero-order hold on the control inputs. Making use of exponential integrators, exact to high accuracy integration is proposed for such systems. New a priori bounds are derived on the computational complexity of integrating bilinear systems with a given error tolerance. Employing our new bounds on computational complexity, we propose a direct exponential integrator to solve bilinear ODEs via the solution of sparse linear systems of equations. Based on this, a novel sparse direct collocation of bilinear systems for optimal control is proposed. These integration schemes are also used within the indirect optimal control method discussed in the first part.

Synthesis of Optimal Control of a Wave Energy Converter

Synthesis of Optimal Control of a Wave Energy Converter PDF Author: Paul Nebel
Publisher:
ISBN:
Category : Direct energy conversion
Languages : en
Pages : 0

Get Book Here

Book Description


Synthesis of Optimal Control of a Wave Energy Converter

Synthesis of Optimal Control of a Wave Energy Converter PDF Author: Paul Nebel
Publisher:
ISBN:
Category : Direct energy conversion
Languages : en
Pages :

Get Book Here

Book Description


Developments in Renewable Energies Offshore

Developments in Renewable Energies Offshore PDF Author: Guedes Soares Carlos
Publisher: CRC Press
ISBN: 1000318737
Category : Technology & Engineering
Languages : en
Pages : 819

Get Book Here

Book Description
Developments in Renewable Energies Offshore contains the papers presented at the 4th International Conference on Renewable Energies Offshore (RENEW 2020, Lisbon, Portugal, 12 - 15 October 2020). The book covers a wide range of topics, including: resource assessment; wind energy; wave energy; tidal energy; ocean energy devices; multiuse platforms; PTO design; grid connection; economic assessment; materials and structural design; installation planning and maintenance planning. The book will be invaluable to professionals and academics involved or interested in Offshore Engineering, and Renewable and Wind Energy.