Author: Martino Bardi
Publisher: Springer Science & Business Media
ISBN: 0817647554
Category : Science
Languages : en
Pages : 588
Book Description
This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.
Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations
Author: Martino Bardi
Publisher: Springer Science & Business Media
ISBN: 0817647554
Category : Science
Languages : en
Pages : 588
Book Description
This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.
Publisher: Springer Science & Business Media
ISBN: 0817647554
Category : Science
Languages : en
Pages : 588
Book Description
This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.
Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations
Author: Martino Bardi
Publisher: Springer Science & Business Media
ISBN: 0817647546
Category : Science
Languages : en
Pages : 586
Book Description
This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.
Publisher: Springer Science & Business Media
ISBN: 0817647546
Category : Science
Languages : en
Pages : 586
Book Description
This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.
Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations
Author: Martino Bardi
Publisher: Birkhauser
ISBN: 0817636404
Category : Mathematics
Languages : en
Pages : 570
Book Description
This book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamiltona "Jacobi type and its interplay with Bellmana (TM)s dynamic programming approach to optimal control and differential games, as it developed after the beginning of the 1980s with the pioneering work of M. Crandall and P.L. Lions. The book will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. In particular, it will appeal to system theorists wishing to learn about a mathematical theory providing a correct framework for the classical method of dynamic programming as well as mathematicians interested in new methods for first-order nonlinear PDEs. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book. "The exposition is self-contained, clearly written and mathematically precise. The exercises and open problemsa ]will stimulate research in the field. The rich bibliography (over 530 titles) and the historical notes provide a useful guide to the area." a " Mathematical Reviews "With an excellent printing and clear structure (including an extensive subject and symbol registry) the book offers a deep insight into the praxis and theory of optimal control for the mathematically skilled reader. All sections close with suggestions for exercisesa ]Finally, with more than 500 cited references, an overview on the history and the main works of this modern mathematical discipline is given." a " ZAA "The minimal mathematical background...the detailed and clear proofs, the elegant style of presentation, and the sets of proposed exercises at the end of each section recommend this book, in the first place, as a lecture course for graduate students and as a manual for beginners in the field. However, this status is largely extended by the presence of many advanced topics and results by the fairly comprehensive and up-to-date bibliography and, particularly, by the very pertinent historical and bibliographical comments at the end of each chapter. In my opinion, this book is yet another remarkable outcome of the brilliant Italian School of Mathematics." a " Zentralblatt MATH "The book is based on some lecture notes taught by the authors at several universities...and selected parts of it can be used for graduate courses in optimal control. But it can be also used as a reference text for researchers (mathematicians and engineers)...In writing this book, the authors lend a great service to the mathematical community providing an accessible and rigorous treatment of a difficult subject." a " Acta Applicandae Mathematicae
Publisher: Birkhauser
ISBN: 0817636404
Category : Mathematics
Languages : en
Pages : 570
Book Description
This book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamiltona "Jacobi type and its interplay with Bellmana (TM)s dynamic programming approach to optimal control and differential games, as it developed after the beginning of the 1980s with the pioneering work of M. Crandall and P.L. Lions. The book will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. In particular, it will appeal to system theorists wishing to learn about a mathematical theory providing a correct framework for the classical method of dynamic programming as well as mathematicians interested in new methods for first-order nonlinear PDEs. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book. "The exposition is self-contained, clearly written and mathematically precise. The exercises and open problemsa ]will stimulate research in the field. The rich bibliography (over 530 titles) and the historical notes provide a useful guide to the area." a " Mathematical Reviews "With an excellent printing and clear structure (including an extensive subject and symbol registry) the book offers a deep insight into the praxis and theory of optimal control for the mathematically skilled reader. All sections close with suggestions for exercisesa ]Finally, with more than 500 cited references, an overview on the history and the main works of this modern mathematical discipline is given." a " ZAA "The minimal mathematical background...the detailed and clear proofs, the elegant style of presentation, and the sets of proposed exercises at the end of each section recommend this book, in the first place, as a lecture course for graduate students and as a manual for beginners in the field. However, this status is largely extended by the presence of many advanced topics and results by the fairly comprehensive and up-to-date bibliography and, particularly, by the very pertinent historical and bibliographical comments at the end of each chapter. In my opinion, this book is yet another remarkable outcome of the brilliant Italian School of Mathematics." a " Zentralblatt MATH "The book is based on some lecture notes taught by the authors at several universities...and selected parts of it can be used for graduate courses in optimal control. But it can be also used as a reference text for researchers (mathematicians and engineers)...In writing this book, the authors lend a great service to the mathematical community providing an accessible and rigorous treatment of a difficult subject." a " Acta Applicandae Mathematicae
Hamilton-Jacobi-Bellman Equations
Author: Dante Kalise
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110542714
Category : Mathematics
Languages : en
Pages : 245
Book Description
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton–Jacobi–Bellman equations Improving policies for Hamilton–Jacobi–Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton–Jacobi–Bellman equations based on diagonally implicit symplectic Runge–Kutta methods Numerical solution of the simple Monge–Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton–Jacobi–Bellman equation within the European Union Emission Trading Scheme
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110542714
Category : Mathematics
Languages : en
Pages : 245
Book Description
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton–Jacobi–Bellman equations Improving policies for Hamilton–Jacobi–Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton–Jacobi–Bellman equations based on diagonally implicit symplectic Runge–Kutta methods Numerical solution of the simple Monge–Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton–Jacobi–Bellman equation within the European Union Emission Trading Scheme
Controlled Markov Processes and Viscosity Solutions
Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
ISBN: 0387310711
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.
Publisher: Springer Science & Business Media
ISBN: 0387310711
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.
Variational Calculus, Optimal Control and Applications
Author: Leonhard Bittner
Publisher: Birkhäuser
ISBN: 3034888023
Category : Mathematics
Languages : en
Pages : 354
Book Description
The 12th conference on "Variational Calculus, Optimal Control and Applications" took place September 23-27, 1996, in Trassenheide on the Baltic Sea island of Use dom. Seventy mathematicians from ten countries participated. The preceding eleven conferences, too, were held in places of natural beauty throughout West Pomerania; the first time, in 1972, in Zinnowitz, which is in the immediate area of Trassenheide. The conferences were founded, and led ten times, by Professor Bittner (Greifswald) and Professor KlCitzler (Leipzig), who both celebrated their 65th birthdays in 1996. The 12th conference in Trassenheide, was, therefore, also dedicated to L. Bittner and R. Klotzler. Both scientists made a lasting impression on control theory in the former GDR. Originally, the conferences served to promote the exchange of research results. In the first years, most of the lectures were theoretical, but in the last few conferences practical applications have been given more attention. Besides their pioneering theoretical works, both honorees have also always dealt with applications problems. L. Bittner has, for example, examined optimal control of nuclear reactors and associated safety aspects. Since 1992 he has been working on applications in optimal control in flight dynamics. R. Klotzler recently applied his results on optimal autobahn planning to the south tangent in Leipzig. The contributions published in these proceedings reflect the trend to practical problems; starting points are often questions from flight dynamics.
Publisher: Birkhäuser
ISBN: 3034888023
Category : Mathematics
Languages : en
Pages : 354
Book Description
The 12th conference on "Variational Calculus, Optimal Control and Applications" took place September 23-27, 1996, in Trassenheide on the Baltic Sea island of Use dom. Seventy mathematicians from ten countries participated. The preceding eleven conferences, too, were held in places of natural beauty throughout West Pomerania; the first time, in 1972, in Zinnowitz, which is in the immediate area of Trassenheide. The conferences were founded, and led ten times, by Professor Bittner (Greifswald) and Professor KlCitzler (Leipzig), who both celebrated their 65th birthdays in 1996. The 12th conference in Trassenheide, was, therefore, also dedicated to L. Bittner and R. Klotzler. Both scientists made a lasting impression on control theory in the former GDR. Originally, the conferences served to promote the exchange of research results. In the first years, most of the lectures were theoretical, but in the last few conferences practical applications have been given more attention. Besides their pioneering theoretical works, both honorees have also always dealt with applications problems. L. Bittner has, for example, examined optimal control of nuclear reactors and associated safety aspects. Since 1992 he has been working on applications in optimal control in flight dynamics. R. Klotzler recently applied his results on optimal autobahn planning to the south tangent in Leipzig. The contributions published in these proceedings reflect the trend to practical problems; starting points are often questions from flight dynamics.
Stochastic Optimal Control in Infinite Dimension
Author: Giorgio Fabbri
Publisher: Springer
ISBN: 3319530674
Category : Mathematics
Languages : en
Pages : 928
Book Description
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.
Publisher: Springer
ISBN: 3319530674
Category : Mathematics
Languages : en
Pages : 928
Book Description
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.
Numerical Methods for Viscosity Solutions and Applications
Author: Maurizio Falcone
Publisher: World Scientific
ISBN: 9789812799807
Category : Mathematics
Languages : en
Pages : 256
Book Description
Geometrical optics and viscosity solutions / A.-P. Blanc, G. T. Kossioris and G. N. Makrakis -- Computation of vorticity evolution for a cylindrical Type-II superconductor subject to parallel and transverse applied magnetic fields / A. Briggs ... [et al.] -- A characterization of the value function for a class of degenerate control problems / F. Camilli -- Some microstructures in three dimensions / M. Chipot and V. Lecuyer -- Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow / K. Deckelnick and G. Dziuk -- Optimal discretization steps in semi-lagrangian approximation of first-order PDEs / M. Falcone, R. Ferretti and T. Manfroni -- Convergence past singularities to the forced mean curvature flow for a modified reaction-diffusion approach / F. Fierro -- The viscosity-duality solutions approach to geometric pptics for the Helmholtz equation / L. Gosse and F. James -- Adaptive grid generation for evolutive Hamilton-Jacobi-Bellman equations / L. Grune -- Solution and application of anisotropic curvature driven evolution of curves (and surfaces) / K. Mikula -- An adaptive scheme on unstructured grids for the shape-from-shading problem / M. Sagona and A. Seghini -- On a posteriori error estimation for constant obstacle problems / A. Veeser.
Publisher: World Scientific
ISBN: 9789812799807
Category : Mathematics
Languages : en
Pages : 256
Book Description
Geometrical optics and viscosity solutions / A.-P. Blanc, G. T. Kossioris and G. N. Makrakis -- Computation of vorticity evolution for a cylindrical Type-II superconductor subject to parallel and transverse applied magnetic fields / A. Briggs ... [et al.] -- A characterization of the value function for a class of degenerate control problems / F. Camilli -- Some microstructures in three dimensions / M. Chipot and V. Lecuyer -- Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow / K. Deckelnick and G. Dziuk -- Optimal discretization steps in semi-lagrangian approximation of first-order PDEs / M. Falcone, R. Ferretti and T. Manfroni -- Convergence past singularities to the forced mean curvature flow for a modified reaction-diffusion approach / F. Fierro -- The viscosity-duality solutions approach to geometric pptics for the Helmholtz equation / L. Gosse and F. James -- Adaptive grid generation for evolutive Hamilton-Jacobi-Bellman equations / L. Grune -- Solution and application of anisotropic curvature driven evolution of curves (and surfaces) / K. Mikula -- An adaptive scheme on unstructured grids for the shape-from-shading problem / M. Sagona and A. Seghini -- On a posteriori error estimation for constant obstacle problems / A. Veeser.
Stochastic and Differential Games
Author: Martino Bardi
Publisher: Springer Science & Business Media
ISBN: 9780817640293
Category : Mathematics
Languages : en
Pages : 404
Book Description
The theory of two-person, zero-sum differential games started at the be ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.
Publisher: Springer Science & Business Media
ISBN: 9780817640293
Category : Mathematics
Languages : en
Pages : 404
Book Description
The theory of two-person, zero-sum differential games started at the be ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.
Backward Stochastic Differential Equations
Author: N El Karoui
Publisher: CRC Press
ISBN: 9780582307339
Category : Mathematics
Languages : en
Pages : 236
Book Description
This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.
Publisher: CRC Press
ISBN: 9780582307339
Category : Mathematics
Languages : en
Pages : 236
Book Description
This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.