Author: Gina Lee-Glauser
Publisher:
ISBN:
Category :
Languages : en
Pages : 84
Book Description
Optimal Active Vibration Absorber: Design and Experimental Results
Author: Gina Lee-Glauser
Publisher:
ISBN:
Category :
Languages : en
Pages : 84
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 84
Book Description
2021 European Control Conference (ECC)
Author: IEEE Staff
Publisher:
ISBN: 9781665479455
Category :
Languages : en
Pages :
Book Description
The conference aims to bring together academic and industrial professionals in the field of systems and control, and to promote scientific cooperation and exchanges within the European Union and between Europe and other parts of the World
Publisher:
ISBN: 9781665479455
Category :
Languages : en
Pages :
Book Description
The conference aims to bring together academic and industrial professionals in the field of systems and control, and to promote scientific cooperation and exchanges within the European Union and between Europe and other parts of the World
Active Vibration & Noise Control: Design Towards Performance Limit
Author: Jiqiang Wang
Publisher: Springer Nature
ISBN: 9811941165
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
The book is motivated by the pivotal issue: what is the performance limit of active control and energy harvesting? It aims to develop systematic design methodologies with a “visualization technique” where the performance limit can be readily determined solely based on visual inspections. Modern technological systems have evolved toward high speed, heavy load, lightweight, flexible operation and extreme conditions, as demonstrated in aerospace, marine, transportation and manufacturing industries. The associated vibration and noise issues have become such problematic that they may significantly confine the performance of the systems, to say the discomfort at least. Through the geometric representation of the performance specifications, fundamental issues such as (1) the existence of feasible controllers; (2) the optimality of controllers; (3) the performance limit of controllers; (4) compromisability among the performance specifications; (5) the synthesis of controllers; and (6) the influence of constraints on optimal solutions can all be resolved within the proposed framework. The state of the art is thus refined with a new approach complementary to those optimization-based routines, where extra effort would have to be exercised to disclose the compromisability of performance specifications. The proposed book will result in a new design methodology—performance limit-oriented active control. It was initiated by the author with the project “Active Control for Performance Limit” (ACPL). A series of fundamental results are obtained and will be disseminated in this book. The results are verified through extensive numerical demonstrations and are expected to provide useful guidance for practical engineering in the vibration and noise industry and research.
Publisher: Springer Nature
ISBN: 9811941165
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
The book is motivated by the pivotal issue: what is the performance limit of active control and energy harvesting? It aims to develop systematic design methodologies with a “visualization technique” where the performance limit can be readily determined solely based on visual inspections. Modern technological systems have evolved toward high speed, heavy load, lightweight, flexible operation and extreme conditions, as demonstrated in aerospace, marine, transportation and manufacturing industries. The associated vibration and noise issues have become such problematic that they may significantly confine the performance of the systems, to say the discomfort at least. Through the geometric representation of the performance specifications, fundamental issues such as (1) the existence of feasible controllers; (2) the optimality of controllers; (3) the performance limit of controllers; (4) compromisability among the performance specifications; (5) the synthesis of controllers; and (6) the influence of constraints on optimal solutions can all be resolved within the proposed framework. The state of the art is thus refined with a new approach complementary to those optimization-based routines, where extra effort would have to be exercised to disclose the compromisability of performance specifications. The proposed book will result in a new design methodology—performance limit-oriented active control. It was initiated by the author with the project “Active Control for Performance Limit” (ACPL). A series of fundamental results are obtained and will be disseminated in this book. The results are verified through extensive numerical demonstrations and are expected to provide useful guidance for practical engineering in the vibration and noise industry and research.
Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems
Author: Francisco Beltran-Carbajal
Publisher: BoD – Books on Demand
ISBN: 178923056X
Category : Technology & Engineering
Languages : en
Pages : 132
Book Description
This book focuses on recent and innovative methods on vibration analysis, system identification, and diverse control design methods for both wind energy conversion systems and vibrating systems. Advances on both theoretical and experimental studies about analysis and control of oscillating systems in several engineering disciplines are discussed. Various control devices are synthesized and implemented for vibration attenuation tasks. The book is addressed to researchers and practitioners on the subject, as well as undergraduate and postgraduate students and other experts and newcomers seeking more information about the state of the art, new challenges, innovative solutions, and new trends and developments in these areas. The six chapters of the book cover a wide range of interesting issues related to modeling, vibration control, parameter identification, active vehicle suspensions, tuned vibration absorbers, electronically controlled wind energy conversion systems, and other relevant case studies.
Publisher: BoD – Books on Demand
ISBN: 178923056X
Category : Technology & Engineering
Languages : en
Pages : 132
Book Description
This book focuses on recent and innovative methods on vibration analysis, system identification, and diverse control design methods for both wind energy conversion systems and vibrating systems. Advances on both theoretical and experimental studies about analysis and control of oscillating systems in several engineering disciplines are discussed. Various control devices are synthesized and implemented for vibration attenuation tasks. The book is addressed to researchers and practitioners on the subject, as well as undergraduate and postgraduate students and other experts and newcomers seeking more information about the state of the art, new challenges, innovative solutions, and new trends and developments in these areas. The six chapters of the book cover a wide range of interesting issues related to modeling, vibration control, parameter identification, active vehicle suspensions, tuned vibration absorbers, electronically controlled wind energy conversion systems, and other relevant case studies.
Dynamic Vibration Absorbers
Author: Boris G. Korenev
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
A detailed and extensive description regarding the theory of passive dynamic absorbers not requiring additional energy sources. Considers the peculiarities in solving vibration absorption problems using the simplest double-mass linear model of the protected structure and absorber. Examines design schemes and offers data on the efficiency of complicated absorber models. Deals with the problems of vibration damping of continuous and multimass systems. Describes practical applications of the vibration protection theory for various constructions and objects.
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
A detailed and extensive description regarding the theory of passive dynamic absorbers not requiring additional energy sources. Considers the peculiarities in solving vibration absorption problems using the simplest double-mass linear model of the protected structure and absorber. Examines design schemes and offers data on the efficiency of complicated absorber models. Deals with the problems of vibration damping of continuous and multimass systems. Describes practical applications of the vibration protection theory for various constructions and objects.
Optimized Engineering Vibration Isolation, Absorption and Control
Author: Wei Huang
Publisher: Springer Nature
ISBN: 9819922135
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
This book presents the research results of advanced vibration control technology, based on two types of typical equipment in industrial engineering of China: power equipment and vibration-sensitive equipment. The main contents of this book include optimized active control strategy research, semi-active control research that can track and equivalently achieve active control effects, refined analysis of active control based on finite element method, research on the impact of vibration isolator layout on vibration isolation performance, passive and active control research based on system freedom decoupling and load decoupling, realized passive and active control research using quasi-zero stiffness system based on positive and negative stiffness, intelligent sensors optimization deployment of plane and space structure, and related key technology application cases in engineering applications. This book provides useful references for engineers and researchers in industrial engineering and technical support for practitioners in the development of China's high-end industry.
Publisher: Springer Nature
ISBN: 9819922135
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
This book presents the research results of advanced vibration control technology, based on two types of typical equipment in industrial engineering of China: power equipment and vibration-sensitive equipment. The main contents of this book include optimized active control strategy research, semi-active control research that can track and equivalently achieve active control effects, refined analysis of active control based on finite element method, research on the impact of vibration isolator layout on vibration isolation performance, passive and active control research based on system freedom decoupling and load decoupling, realized passive and active control research using quasi-zero stiffness system based on positive and negative stiffness, intelligent sensors optimization deployment of plane and space structure, and related key technology application cases in engineering applications. This book provides useful references for engineers and researchers in industrial engineering and technical support for practitioners in the development of China's high-end industry.
Vibration Control of Active Structures
Author: A. Preumont
Publisher: Springer Science & Business Media
ISBN: 0306484226
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
My objective in writing this book was to cross the bridge between the structural dynamics and control communities, while providing an overview of the potential of SMART materials for sensing and actuating purposes in active vibration c- trol. I wanted to keep it relatively simple and focused on systems which worked. This resulted in the following: (i) I restricted the text to fundamental concepts and left aside most advanced ones (i.e. robust control) whose usefulness had not yet clearly been established for the application at hand. (ii) I promoted the use of collocated actuator/sensor pairs whose potential, I thought, was strongly underestimated by the control community. (iii) I emphasized control laws with guaranteed stability for active damping (the wide-ranging applications of the IFF are particularly impressive). (iv) I tried to explain why an accurate pred- tion of the transmission zeros (usually called anti-resonances by the structural dynamicists) is so important in evaluating the performance of a control system. (v) I emphasized the fact that the open-loop zeros are more difficult to predict than the poles, and that they could be strongly influenced by the model trun- tion (high frequency dynamics) or by local effects (such as membrane strains in piezoelectric shells), especially for nearly collocated distributed actuator/sensor pairs; this effect alone explains many disappointments in active control systems.
Publisher: Springer Science & Business Media
ISBN: 0306484226
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
My objective in writing this book was to cross the bridge between the structural dynamics and control communities, while providing an overview of the potential of SMART materials for sensing and actuating purposes in active vibration c- trol. I wanted to keep it relatively simple and focused on systems which worked. This resulted in the following: (i) I restricted the text to fundamental concepts and left aside most advanced ones (i.e. robust control) whose usefulness had not yet clearly been established for the application at hand. (ii) I promoted the use of collocated actuator/sensor pairs whose potential, I thought, was strongly underestimated by the control community. (iii) I emphasized control laws with guaranteed stability for active damping (the wide-ranging applications of the IFF are particularly impressive). (iv) I tried to explain why an accurate pred- tion of the transmission zeros (usually called anti-resonances by the structural dynamicists) is so important in evaluating the performance of a control system. (v) I emphasized the fact that the open-loop zeros are more difficult to predict than the poles, and that they could be strongly influenced by the model trun- tion (high frequency dynamics) or by local effects (such as membrane strains in piezoelectric shells), especially for nearly collocated distributed actuator/sensor pairs; this effect alone explains many disappointments in active control systems.
Theory of Vibration Protection
Author: Igor A. Karnovsky
Publisher: Springer
ISBN: 3319280201
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans.“p> Numerous examples, which illustrate the theoretical ideas of each chapter, are included. This book is intended for graduate students and engineers. It is assumed that a reader has working knowledge of theory of vibrations, differential equations, andcomplex analysis. About the Authors. Igor A Karnovsky, Ph.D., Dr. Sci., is a specialist in structural analysis, theory of vibration and optimal control of vibration. He has 40 years of experience in research, teaching and consulting in this field, and is the author of more than 70 published scientific papers, including two books in Structural Analysis (published with Springer in 2010-2012) and three handbooks in Structural Dynamics (published with McGraw Hill in 2001-2004). He also holds a number of vibration-control-related patents. Evgeniy Lebed, Ph.D., is a specialist in applied mathematics and engineering. He has 10 years of experience in research, teaching and consulting in this field. The main sphere of his research interests are qualitative theory of differential equations, integral transforms and frequency-domain analysis with application to image and signal processing. He is the author of 15 published scientific papers and a US patent (2015).
Publisher: Springer
ISBN: 3319280201
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans.“p> Numerous examples, which illustrate the theoretical ideas of each chapter, are included. This book is intended for graduate students and engineers. It is assumed that a reader has working knowledge of theory of vibrations, differential equations, andcomplex analysis. About the Authors. Igor A Karnovsky, Ph.D., Dr. Sci., is a specialist in structural analysis, theory of vibration and optimal control of vibration. He has 40 years of experience in research, teaching and consulting in this field, and is the author of more than 70 published scientific papers, including two books in Structural Analysis (published with Springer in 2010-2012) and three handbooks in Structural Dynamics (published with McGraw Hill in 2001-2004). He also holds a number of vibration-control-related patents. Evgeniy Lebed, Ph.D., is a specialist in applied mathematics and engineering. He has 10 years of experience in research, teaching and consulting in this field. The main sphere of his research interests are qualitative theory of differential equations, integral transforms and frequency-domain analysis with application to image and signal processing. He is the author of 15 published scientific papers and a US patent (2015).
Vibration Control and Actuation of Large-Scale Systems
Author: Hamid Reza Karimi
Publisher: Academic Press
ISBN: 0128211989
Category : Technology & Engineering
Languages : en
Pages : 410
Book Description
Vibration Control and Actuation of Large-Scale Systems gives a systematically and self-contained description of the many facets of envisaging, designing, implementing, or experimentally exploring advanced vibration control systems. The book is devoted to the development of mathematical methodologies for vibration analysis and control problems of large-scale systems, including structural dynamics, vehicle dynamics and wind turbines, for example. The research problems addressed in each chapter are well motivated, with numerical and simulation results given in each chapter that reflect best engineering practice. - Provides a series of the latest results in vibration control, structural control, actuation, component failures, and more - Gives numerical and simulation results to reflect best engineering practice - Presents recent advances of theory, technological aspects, and applications of advanced control methodologies in vibration control
Publisher: Academic Press
ISBN: 0128211989
Category : Technology & Engineering
Languages : en
Pages : 410
Book Description
Vibration Control and Actuation of Large-Scale Systems gives a systematically and self-contained description of the many facets of envisaging, designing, implementing, or experimentally exploring advanced vibration control systems. The book is devoted to the development of mathematical methodologies for vibration analysis and control problems of large-scale systems, including structural dynamics, vehicle dynamics and wind turbines, for example. The research problems addressed in each chapter are well motivated, with numerical and simulation results given in each chapter that reflect best engineering practice. - Provides a series of the latest results in vibration control, structural control, actuation, component failures, and more - Gives numerical and simulation results to reflect best engineering practice - Presents recent advances of theory, technological aspects, and applications of advanced control methodologies in vibration control
Vibration Engineering and Technology of Machinery, Volume I
Author: Rajiv Tiwari
Publisher: Springer Nature
ISBN: 9819947219
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
This book presents the proceedings of the XVI International Conference on Vibration Engineering and Technology of Machinery (VETOMAC 2021). It gathers the latest advances, innovations, and applications in the field of vibration and technology of machinery. Topics include concepts and methods in dynamics, dynamics of mechanical and structural systems, dynamics and control, condition monitoring, machinery and structural dynamics, rotor dynamics, experimental techniques, finite element model updating, industrial case studies, vibration control and energy harvesting, and MEMS. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations. The book is useful for the researchers, engineers and professionals working in the area of vibration engineering and technology of machinery.
Publisher: Springer Nature
ISBN: 9819947219
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
This book presents the proceedings of the XVI International Conference on Vibration Engineering and Technology of Machinery (VETOMAC 2021). It gathers the latest advances, innovations, and applications in the field of vibration and technology of machinery. Topics include concepts and methods in dynamics, dynamics of mechanical and structural systems, dynamics and control, condition monitoring, machinery and structural dynamics, rotor dynamics, experimental techniques, finite element model updating, industrial case studies, vibration control and energy harvesting, and MEMS. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations. The book is useful for the researchers, engineers and professionals working in the area of vibration engineering and technology of machinery.