Author: Hee Lim
Publisher: Createspace Independent Publishing Platform
ISBN: 9781729590461
Category :
Languages : en
Pages : 456
Book Description
This pictorial manuscript is a step-by-step graphical illustrations for waveguides and devices modeling and computational physics simulation using COMSOL Multiphysics with Ray Optics, Wave Optics and AC/DC Electrostatics modules. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optical Guided Waves and Devices by Richard Syms and John Cozens. The simulations include the use of geometrical ray tracings for point source and full electromagnetic waves source employing the Maxwell's wave equations for plane wave input. Both 2D and 3D simulation results will help in visualize the electromagnetic field propagating inside the waveguides and devices. Readers without fundamental handle on optics modeling are suggested to read the Optics Modeling and Visualization with COMSOL Multiphysics: A step by step graphical instruction manuscripts for detailed discussion. These models may be expanded to post-graduate research and industrial photonics waveguides and devices development. There are 46 chapters of different 2D and 3D optical waveguides & devices structures modeled and simulated in Volume 1 and 2. Volume 1 models include 3D single mode optical fiber, planar waveguide, channel waveguide, longitudinal and transverse phase modulator, surface plasmon, optical square waveguide, tapered waveguide, FTIR beamsplitter in ray tracing and electromagnetic wave solvers, full prism coupler, halved prism coupler, plano convex overlay lens, overlay Luneburg lens, geodesic lens with control setup for resulted electric field comparison, corrugated gratings, transmission and reflection gratings, chirped grating lens, beam expander grating, grating coupler, chirped grating coupler, buried channel waveguide. Volume 2 models continue with the ridge channel waveguide, strip loaded channel waveguide, GaAs GaAlAs planar waveguide, GaAs GaAlAs heterostructure waveguide, radiation leaks at fiber bend, radiation leaks at waveguide bend, c-axis Calcite polarizer waveguide, integrated optic normal reflector, horn channel waveguide, Y-Junction waveguide, optical phase modulator, cut off modulator, electro optic Mach-Zehnder interferometer waveguide, parallel coupling waveguide, electro optic directional coupler, single polished fiber directional coupler, double polished fiber directional coupler, tunable-coupling strength of polished double fiber coupler, cross sectional coaxial fiber coupler, 2D directional coupler with tapered coupling, corrugated reflection gratings, optical fiber grating on half polished fiber coupler, and track-changing reflector with grating assisted-coupling fiber.
Optical Waveguides and Devices Modeling and Visualization Using COMSOL Multiphysics Volume 1
Author: Hee Lim
Publisher: Createspace Independent Publishing Platform
ISBN: 9781729590461
Category :
Languages : en
Pages : 456
Book Description
This pictorial manuscript is a step-by-step graphical illustrations for waveguides and devices modeling and computational physics simulation using COMSOL Multiphysics with Ray Optics, Wave Optics and AC/DC Electrostatics modules. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optical Guided Waves and Devices by Richard Syms and John Cozens. The simulations include the use of geometrical ray tracings for point source and full electromagnetic waves source employing the Maxwell's wave equations for plane wave input. Both 2D and 3D simulation results will help in visualize the electromagnetic field propagating inside the waveguides and devices. Readers without fundamental handle on optics modeling are suggested to read the Optics Modeling and Visualization with COMSOL Multiphysics: A step by step graphical instruction manuscripts for detailed discussion. These models may be expanded to post-graduate research and industrial photonics waveguides and devices development. There are 46 chapters of different 2D and 3D optical waveguides & devices structures modeled and simulated in Volume 1 and 2. Volume 1 models include 3D single mode optical fiber, planar waveguide, channel waveguide, longitudinal and transverse phase modulator, surface plasmon, optical square waveguide, tapered waveguide, FTIR beamsplitter in ray tracing and electromagnetic wave solvers, full prism coupler, halved prism coupler, plano convex overlay lens, overlay Luneburg lens, geodesic lens with control setup for resulted electric field comparison, corrugated gratings, transmission and reflection gratings, chirped grating lens, beam expander grating, grating coupler, chirped grating coupler, buried channel waveguide. Volume 2 models continue with the ridge channel waveguide, strip loaded channel waveguide, GaAs GaAlAs planar waveguide, GaAs GaAlAs heterostructure waveguide, radiation leaks at fiber bend, radiation leaks at waveguide bend, c-axis Calcite polarizer waveguide, integrated optic normal reflector, horn channel waveguide, Y-Junction waveguide, optical phase modulator, cut off modulator, electro optic Mach-Zehnder interferometer waveguide, parallel coupling waveguide, electro optic directional coupler, single polished fiber directional coupler, double polished fiber directional coupler, tunable-coupling strength of polished double fiber coupler, cross sectional coaxial fiber coupler, 2D directional coupler with tapered coupling, corrugated reflection gratings, optical fiber grating on half polished fiber coupler, and track-changing reflector with grating assisted-coupling fiber.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781729590461
Category :
Languages : en
Pages : 456
Book Description
This pictorial manuscript is a step-by-step graphical illustrations for waveguides and devices modeling and computational physics simulation using COMSOL Multiphysics with Ray Optics, Wave Optics and AC/DC Electrostatics modules. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optical Guided Waves and Devices by Richard Syms and John Cozens. The simulations include the use of geometrical ray tracings for point source and full electromagnetic waves source employing the Maxwell's wave equations for plane wave input. Both 2D and 3D simulation results will help in visualize the electromagnetic field propagating inside the waveguides and devices. Readers without fundamental handle on optics modeling are suggested to read the Optics Modeling and Visualization with COMSOL Multiphysics: A step by step graphical instruction manuscripts for detailed discussion. These models may be expanded to post-graduate research and industrial photonics waveguides and devices development. There are 46 chapters of different 2D and 3D optical waveguides & devices structures modeled and simulated in Volume 1 and 2. Volume 1 models include 3D single mode optical fiber, planar waveguide, channel waveguide, longitudinal and transverse phase modulator, surface plasmon, optical square waveguide, tapered waveguide, FTIR beamsplitter in ray tracing and electromagnetic wave solvers, full prism coupler, halved prism coupler, plano convex overlay lens, overlay Luneburg lens, geodesic lens with control setup for resulted electric field comparison, corrugated gratings, transmission and reflection gratings, chirped grating lens, beam expander grating, grating coupler, chirped grating coupler, buried channel waveguide. Volume 2 models continue with the ridge channel waveguide, strip loaded channel waveguide, GaAs GaAlAs planar waveguide, GaAs GaAlAs heterostructure waveguide, radiation leaks at fiber bend, radiation leaks at waveguide bend, c-axis Calcite polarizer waveguide, integrated optic normal reflector, horn channel waveguide, Y-Junction waveguide, optical phase modulator, cut off modulator, electro optic Mach-Zehnder interferometer waveguide, parallel coupling waveguide, electro optic directional coupler, single polished fiber directional coupler, double polished fiber directional coupler, tunable-coupling strength of polished double fiber coupler, cross sectional coaxial fiber coupler, 2D directional coupler with tapered coupling, corrugated reflection gratings, optical fiber grating on half polished fiber coupler, and track-changing reflector with grating assisted-coupling fiber.
Optical Waveguides and Devices Modeling and Visualization Using COMSOL Multiphysics Volume 2
Author: Hee Lim
Publisher: Createspace Independent Publishing Platform
ISBN: 9781729548202
Category :
Languages : en
Pages : 416
Book Description
This pictorial manuscript is a step-by-step graphical illustrations for waveguides and devices modeling and computational physics simulation using COMSOL Multiphysics with Ray Optics, Wave Optics and AC/DC Electrostatics modules. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optical Guided Waves and Devices by Richard Syms and John Cozens. The simulations include the use of geometrical ray tracings for point source and full electromagnetic waves source employing the Maxwell's wave equations for plane wave input. Both 2D and 3D simulation results will help in visualize the electromagnetic field propagating inside the waveguides and devices. Readers without fundamental handle on optics modeling are suggested to read the Optics Modeling and Visualization with COMSOL Multiphysics: A step by step graphical instruction manuscripts for detailed discussion. These models may be expanded to post-graduate research and industrial photonics waveguides and devices development. There are 46 chapters of different 2D and 3D optical waveguides & devices structures modeled and simulated in Volume 1 and 2. Volume 1 models include 3D single mode optical fiber, planar waveguide, channel waveguide, longitudinal and transverse phase modulator, surface plasmon, optical square waveguide, tapered waveguide, FTIR beamsplitter in ray tracing and electromagnetic wave solvers, full prism coupler, halved prism coupler, plano convex overlay lens, overlay Luneburg lens, geodesic lens with control setup for resulted electric field comparison, corrugated gratings, transmission and reflection gratings, chirped grating lens, beam expander grating, grating coupler, chirped grating coupler, buried channel waveguide. Volume 2 models continue with the ridge channel waveguide, strip loaded channel waveguide, GaAs GaAlAs planar waveguide, GaAs GaAlAs heterostructure waveguide, radiation leaks at fiber bend, radiation leaks at waveguide bend, c-axis Calcite polarizer waveguide, integrated optic normal reflector, horn channel waveguide, Y-Junction waveguide, optical phase modulator, cut off modulator, electro optic Mach-Zehnder interferometer waveguide, parallel coupling waveguide, electro optic directional coupler, single polished fiber directional coupler, double polished fiber directional coupler, tunable-coupling strength of polished double fiber coupler, cross sectional coaxial fiber coupler, 2D directional coupler with tapered coupling, corrugated reflection gratings, optical fiber grating on half polished fiber coupler, and track-changing reflector with grating assisted-coupling fiber.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781729548202
Category :
Languages : en
Pages : 416
Book Description
This pictorial manuscript is a step-by-step graphical illustrations for waveguides and devices modeling and computational physics simulation using COMSOL Multiphysics with Ray Optics, Wave Optics and AC/DC Electrostatics modules. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optical Guided Waves and Devices by Richard Syms and John Cozens. The simulations include the use of geometrical ray tracings for point source and full electromagnetic waves source employing the Maxwell's wave equations for plane wave input. Both 2D and 3D simulation results will help in visualize the electromagnetic field propagating inside the waveguides and devices. Readers without fundamental handle on optics modeling are suggested to read the Optics Modeling and Visualization with COMSOL Multiphysics: A step by step graphical instruction manuscripts for detailed discussion. These models may be expanded to post-graduate research and industrial photonics waveguides and devices development. There are 46 chapters of different 2D and 3D optical waveguides & devices structures modeled and simulated in Volume 1 and 2. Volume 1 models include 3D single mode optical fiber, planar waveguide, channel waveguide, longitudinal and transverse phase modulator, surface plasmon, optical square waveguide, tapered waveguide, FTIR beamsplitter in ray tracing and electromagnetic wave solvers, full prism coupler, halved prism coupler, plano convex overlay lens, overlay Luneburg lens, geodesic lens with control setup for resulted electric field comparison, corrugated gratings, transmission and reflection gratings, chirped grating lens, beam expander grating, grating coupler, chirped grating coupler, buried channel waveguide. Volume 2 models continue with the ridge channel waveguide, strip loaded channel waveguide, GaAs GaAlAs planar waveguide, GaAs GaAlAs heterostructure waveguide, radiation leaks at fiber bend, radiation leaks at waveguide bend, c-axis Calcite polarizer waveguide, integrated optic normal reflector, horn channel waveguide, Y-Junction waveguide, optical phase modulator, cut off modulator, electro optic Mach-Zehnder interferometer waveguide, parallel coupling waveguide, electro optic directional coupler, single polished fiber directional coupler, double polished fiber directional coupler, tunable-coupling strength of polished double fiber coupler, cross sectional coaxial fiber coupler, 2D directional coupler with tapered coupling, corrugated reflection gratings, optical fiber grating on half polished fiber coupler, and track-changing reflector with grating assisted-coupling fiber.
Optics Modeling and Visualization with COMSOL Multiphysics
Author: Hee C. Lim
Publisher: Createspace Independent Publishing Platform
ISBN: 9781724516565
Category : COMSOL Multiphysics
Languages : en
Pages : 376
Book Description
This manuscript is a step-by-step graphical instructions for COMSOL Multiphysics with Ray Optics Module and Wave Optics module modeling and computational physics simulation. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optics by E. Hecht. The simulations include the use of geometrical ray tracings for point source, hemispherical, and conic rays as well as full electromagnetic waves source employing the Maxwell's wave equations for Gaussian waves input. Both 2D and 3D computational physics approach will be discussed with the introduction of the trick-of-the-trades meshings, and modeling skill besides setup options that are skillfully hidden in the simulation software from plain sight.The geometrical model covers 2D and 3D electromagnetic waves propagation in user defined refractive index domain; Laws of Refraction for 2D converging and diverging lens; Laws of Reflection for specular mirrors, 3D Prism, 3D Prism mirror equivalent system; Polarizations for 3D linear polarizers, 3D circular polarizer, 3D linear wave retarder such as half wave plate, quarter wave plate; the Theory of Superposition for the 2D Young's double slits Wavefront-splitting interference experiment, 3D thin film uniform thickness Amplitude-splitting interference experiment, 2D Michelson interferometer Mirrored-interference setup with the 1D interference fringes line graph; Fermat's principle for 2D single slits diffraction, 3D circular aperture diffraction experiment, 3D rectangular slit diffraction experiment, 3D diffraction gratings experiment with Fresnel near field and Fraunhofer far field diffraction pattern, diffraction pattern: Sinc() function observation discussions, the Limitation of ray tracing physics vs. full electromagnetic waves simulations in the physics of optics, the Babinet's principle of transparent openings or opaque obstacles diffraction slit; and finally the Modern optics of 2D and 3D LASER cavity multiphysics models with the application of multiple release time of rays for Stimulated Emission lasing. One of the most important and crucial component of the computational physics subject, the user customizable library of material properties that governs the realisticality of the final modeled results, is highlighted in the appendix section.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781724516565
Category : COMSOL Multiphysics
Languages : en
Pages : 376
Book Description
This manuscript is a step-by-step graphical instructions for COMSOL Multiphysics with Ray Optics Module and Wave Optics module modeling and computational physics simulation. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optics by E. Hecht. The simulations include the use of geometrical ray tracings for point source, hemispherical, and conic rays as well as full electromagnetic waves source employing the Maxwell's wave equations for Gaussian waves input. Both 2D and 3D computational physics approach will be discussed with the introduction of the trick-of-the-trades meshings, and modeling skill besides setup options that are skillfully hidden in the simulation software from plain sight.The geometrical model covers 2D and 3D electromagnetic waves propagation in user defined refractive index domain; Laws of Refraction for 2D converging and diverging lens; Laws of Reflection for specular mirrors, 3D Prism, 3D Prism mirror equivalent system; Polarizations for 3D linear polarizers, 3D circular polarizer, 3D linear wave retarder such as half wave plate, quarter wave plate; the Theory of Superposition for the 2D Young's double slits Wavefront-splitting interference experiment, 3D thin film uniform thickness Amplitude-splitting interference experiment, 2D Michelson interferometer Mirrored-interference setup with the 1D interference fringes line graph; Fermat's principle for 2D single slits diffraction, 3D circular aperture diffraction experiment, 3D rectangular slit diffraction experiment, 3D diffraction gratings experiment with Fresnel near field and Fraunhofer far field diffraction pattern, diffraction pattern: Sinc() function observation discussions, the Limitation of ray tracing physics vs. full electromagnetic waves simulations in the physics of optics, the Babinet's principle of transparent openings or opaque obstacles diffraction slit; and finally the Modern optics of 2D and 3D LASER cavity multiphysics models with the application of multiple release time of rays for Stimulated Emission lasing. One of the most important and crucial component of the computational physics subject, the user customizable library of material properties that governs the realisticality of the final modeled results, is highlighted in the appendix section.
Structural Equation Modeling with EQS and EQS/WINDOWS
Author: Barbara M. Byrne
Publisher: SAGE
ISBN: 9780803950924
Category : Mathematics
Languages : en
Pages : 308
Book Description
Designed to help beginners estimate and test structural equation modeling (SEM) using the EQS approach, this book demonstrates a variety of SEM//EQS applications that include both partial factor analytic and full latent variable models. Beginning with an overview of the basic concepts of SEM and the EQS program, the author works through applications starting with a single sample approach to more advanced applications, such as a multi-sample approach. The book concludes with a section on using EQS for modeling with Windows.
Publisher: SAGE
ISBN: 9780803950924
Category : Mathematics
Languages : en
Pages : 308
Book Description
Designed to help beginners estimate and test structural equation modeling (SEM) using the EQS approach, this book demonstrates a variety of SEM//EQS applications that include both partial factor analytic and full latent variable models. Beginning with an overview of the basic concepts of SEM and the EQS program, the author works through applications starting with a single sample approach to more advanced applications, such as a multi-sample approach. The book concludes with a section on using EQS for modeling with Windows.
Kinetics of Phase Transitions
Author: Sanjay Puri
Publisher: CRC Press
ISBN: 1420008366
Category : Science
Languages : en
Pages : 356
Book Description
Providing a comprehensive introduction with the necessary background material to make it accessible for a wide scientific audience, Kinetics of Phase Transitions discusses developments in domain-growth kinetics. This book combines pedagogical chapters from leading experts in this area and focuses on incorporating various experimentally releva
Publisher: CRC Press
ISBN: 1420008366
Category : Science
Languages : en
Pages : 356
Book Description
Providing a comprehensive introduction with the necessary background material to make it accessible for a wide scientific audience, Kinetics of Phase Transitions discusses developments in domain-growth kinetics. This book combines pedagogical chapters from leading experts in this area and focuses on incorporating various experimentally releva
Gaming and Simulations: Concepts, Methodologies, Tools and Applications
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1609601963
Category : Games & Activities
Languages : en
Pages : 2084
Book Description
"This book set unites fundamental research on the history, current directions, and implications of gaming at individual and organizational levels, exploring all facets of game design and application and describing how this emerging discipline informs and is informed by society and culture"--Provided by publisher.
Publisher: IGI Global
ISBN: 1609601963
Category : Games & Activities
Languages : en
Pages : 2084
Book Description
"This book set unites fundamental research on the history, current directions, and implications of gaming at individual and organizational levels, exploring all facets of game design and application and describing how this emerging discipline informs and is informed by society and culture"--Provided by publisher.
Advanced Operating Systems and Kernel Applications: Techniques and Technologies
Author: Wiseman, Yair
Publisher: IGI Global
ISBN: 1605668516
Category : Computers
Languages : en
Pages : 340
Book Description
"This book discusses non-distributed operating systems that benefit researchers, academicians, and practitioners"--Provided by publisher.
Publisher: IGI Global
ISBN: 1605668516
Category : Computers
Languages : en
Pages : 340
Book Description
"This book discusses non-distributed operating systems that benefit researchers, academicians, and practitioners"--Provided by publisher.
Tensegrity Systems
Author: Robert E. Skelton
Publisher: Springer Science & Business Media
ISBN: 0387742425
Category : Technology & Engineering
Languages : en
Pages : 216
Book Description
This book discusses analytical tools for designing energy efficient and lightweight structures that embody the concept of tensegrity. The book provides both static and dynamic analysis of special tensegrity structural concepts, which are motivated by biological material architecture. This is the first book written to attempt to integrate structure and control design.
Publisher: Springer Science & Business Media
ISBN: 0387742425
Category : Technology & Engineering
Languages : en
Pages : 216
Book Description
This book discusses analytical tools for designing energy efficient and lightweight structures that embody the concept of tensegrity. The book provides both static and dynamic analysis of special tensegrity structural concepts, which are motivated by biological material architecture. This is the first book written to attempt to integrate structure and control design.
Synchronization in Complex Networks of Nonlinear Dynamical Systems
Author: Chai Wah Wu
Publisher: World Scientific
ISBN: 9812709746
Category : Mathematics
Languages : en
Pages : 168
Book Description
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ideas from systems theory, linear algebra and graph theory and the synergy between them that are necessary to derive synchronization conditions. Many of the results, which have been obtained fairly recently and have until now not appeared in textbook form, are presented with complete proofs. This text is suitable for graduate-level study or for researchers who would like to be better acquainted with the latest research in this area. Sample Chapter(s). Chapter 1: Introduction (76 KB). Contents: Graphs, Networks, Laplacian Matrices and Algebraic Connectivity; Graph Models; Synchronization in Networks of Nonlinear Continuous-Time Dynamical Systems; Synchronization in Networks of Coupled Discrete-Time Systems; Synchronization in Network of Systems with Linear Dynamics; Agreement and Consensus Problems in Groups of Interacting Agents. Readership: Graduate students and researchers in physics, applied mathematics and engineering.
Publisher: World Scientific
ISBN: 9812709746
Category : Mathematics
Languages : en
Pages : 168
Book Description
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ideas from systems theory, linear algebra and graph theory and the synergy between them that are necessary to derive synchronization conditions. Many of the results, which have been obtained fairly recently and have until now not appeared in textbook form, are presented with complete proofs. This text is suitable for graduate-level study or for researchers who would like to be better acquainted with the latest research in this area. Sample Chapter(s). Chapter 1: Introduction (76 KB). Contents: Graphs, Networks, Laplacian Matrices and Algebraic Connectivity; Graph Models; Synchronization in Networks of Nonlinear Continuous-Time Dynamical Systems; Synchronization in Networks of Coupled Discrete-Time Systems; Synchronization in Network of Systems with Linear Dynamics; Agreement and Consensus Problems in Groups of Interacting Agents. Readership: Graduate students and researchers in physics, applied mathematics and engineering.
Simulation of Fluid Power Systems with Simcenter Amesim
Author: Nicolae Vasiliu
Publisher: CRC Press
ISBN: 1351645161
Category : Science
Languages : en
Pages : 761
Book Description
This book illustrates numerical simulation of fluid power systems by LMS Amesim Platform covering hydrostatic transmissions, electro hydraulic servo valves, hydraulic servomechanisms for aerospace engineering, speed governors for power machines, fuel injection systems, and automotive servo systems It includes hydrostatic transmissions, automotive fuel injection, hydropower speed units governor, aerospace servo systems along with case studies of specified companies Aids in predicting and optimizing the static and dynamic performances related to the systems under study
Publisher: CRC Press
ISBN: 1351645161
Category : Science
Languages : en
Pages : 761
Book Description
This book illustrates numerical simulation of fluid power systems by LMS Amesim Platform covering hydrostatic transmissions, electro hydraulic servo valves, hydraulic servomechanisms for aerospace engineering, speed governors for power machines, fuel injection systems, and automotive servo systems It includes hydrostatic transmissions, automotive fuel injection, hydropower speed units governor, aerospace servo systems along with case studies of specified companies Aids in predicting and optimizing the static and dynamic performances related to the systems under study