Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources

Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources PDF Author: Federico Canova
Publisher: Springer
ISBN: 3662474433
Category : Science
Languages : en
Pages : 205

Get Book Here

Book Description
The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources

Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources PDF Author: Federico Canova
Publisher: Springer
ISBN: 3662474433
Category : Science
Languages : en
Pages : 205

Get Book Here

Book Description
The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

X-Rays and Extreme Ultraviolet Radiation

X-Rays and Extreme Ultraviolet Radiation PDF Author: David Attwood
Publisher: Cambridge University Press
ISBN: 1107062896
Category : Science
Languages : en
Pages : 655

Get Book Here

Book Description
Master the physics and understand the current applications of modern X-ray and EUV sources with this fully updated second edition.

Tabletop Coherent Extreme Ultraviolet and Soft X-ray Sources Based on High Harmonic Generation

Tabletop Coherent Extreme Ultraviolet and Soft X-ray Sources Based on High Harmonic Generation PDF Author: Chien-Jen Lai (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 115

Get Book Here

Book Description
High harmonic generation (HHG) is a fascinating strong-field physics phenomenon that occurs when a laser pulse with a moderate intensity interacts with atoms and partially ionizes the atoms. A series of harmonics are generated at similar efficiencies and extend to a few tenth, even thousandth, order harmonics at the extreme ultraviolet (EUV) and soft X-ray range. Such an unprecedented broadband and coherent spectrum thus has many novel applications, one of which is to build tabletop coherent EUV and soft X-ray sources. The development of EUV and soft X-ray lasers is very challenging because of the strong absorption of these wavelengths in almost all materials and the lack of appropriate reflection optics. So far, bright coherent EUV and soft X-ray sources are only available at several large-scale facilities, like free-electron lasers. However, the demands for coherent EUV sources is growing due to the advances in atomic physics, chemistry, and material science. Therefore, lab-scale EUV sources are highly desirable for these novel applications and research opportunities, and HHG emerges as a promising technology toward this goal. This thesis will present my PhD work on HHG. It includes the numerical models developed to simulate HHG either on single-atom scale or for a macroscopic medium, the modification to the current theoretical model, the analysis of the influence of plasma defocusing on HHG, the study of the wavelength scaling of HHG efficiency and cutoff with visible and near-infrared (IR) lasers, and the generation of multi-mJ ultrashort mid-IR (2.6 mJ, 39 fs, and 2 tm central wavelength) pulses at kHz repetition rate in the aim of extending the cutoff of HHG. With the kHz mid-IR pulses, an EUV source providing up to 108 photons/sec at 160 eV has been demonstrated, and photons in the water window range have also been detected. At the end, a chapter will summarize these research works and propose some possible future directions.

X-Ray Lasers 2012

X-Ray Lasers 2012 PDF Author: Stéphane Sebban
Publisher: Springer Science & Business Media
ISBN: 3319006967
Category : Science
Languages : en
Pages : 305

Get Book Here

Book Description
These proceedings comprise of invited and contributed papers presented at the 13th International Conference on X-Ray Lasers (ICXRL 2012) which was held 11–15 June 2012 in Paris, France, in the famous Quartier Latin, inside the historical Center of Cordeliers. This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense coherent x-rays and progress towards practical devices and their applications are reported in these proceedings, including areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation. Recent achievements related to the increase of the repetition rate up to 100 Hz and shorter wavelength collisional plasma-based soft x-ray lasers down to about 7 nm are presented. Seeding the amplifying plasma with a femtosecond high-order harmonic of infrared laser was foreseen as the required breakthrough to break the picosecond frontier. Numerical simulations based on the Maxwell-Bloch model are presented in these proceedings, transposing the chirped pulse amplification technique to the x-ray domain in order to increase the time over which the femtosecond seed can be amplified. These proceedings also include innovative applications of soft x–ray lasers based on techniques and diagnostics relevant to topical domains such as EUV lithography, inertial confinement fusion, or warm dense matter physics.

X-Ray Lasers 2016

X-Ray Lasers 2016 PDF Author: Tetsuya Kawachi
Publisher: Springer
ISBN: 3319730258
Category : Science
Languages : en
Pages : 421

Get Book Here

Book Description
These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications. The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

Advances in Optics, Vol. 1

Advances in Optics, Vol. 1 PDF Author: Sergey Yurish
Publisher: Lulu.com
ISBN: 8469794353
Category : Technology & Engineering
Languages : en
Pages : 484

Get Book Here

Book Description
The Vol.1 devoted to various topics of optics and optic instrumentation, and contains 17 chapters written by 36 experts in the field from 15 countries: Brazil, China, Denmark, France, Germany, India, Japan, Mexico, Russia, Turkey, Slovenia, South Korea, UK, Ukraine and USA. ÔAdvances in Optics: ReviewsÕ Book Series is a comprehensive study of the field of optics, which provides readers with the most up-to-date coverage of optics, photonics and lasers with a good balance of practical and theoretical aspects. Directed towards both physicists and engineers this Book Series is also suitable for audiences focusing on applications of optics. A clear comprehensive presentation makes these books work well as both a teaching resources and a reference books. The book is intended for researchers and scientists in physics and optics, in academia and industry, as well as postgraduate students.

Soft X-Rays and Extreme Ultraviolet Radiation

Soft X-Rays and Extreme Ultraviolet Radiation PDF Author: David Attwood
Publisher: Cambridge University Press
ISBN: 1139643428
Category : Technology & Engineering
Languages : en
Pages : 611

Get Book Here

Book Description
This detailed, comprehensive book describes the fundamental properties of soft X-rays and extreme ultraviolet (EUV) radiation and discusses their applications in a wide variety of fields, including EUV lithography for semiconductor chip manufacture and soft X-ray biomicroscopy. The author begins by presenting the relevant basic principles such as radiation and scattering, wave propagation, diffraction, and coherence. He then goes on to examine a broad range of phenomena and applications. The topics covered include spectromicroscopy, EUV astronomy, synchrotron radiation, and soft X-ray lasers. The author also provides a wealth of useful reference material such as electron binding energies, characteristic emission lines and photo-absorption cross-sections. The book will be of great interest to graduate students and researchers in engineering, physics, chemistry, and the life sciences. It will also appeal to practising engineers involved in semiconductor fabrication and materials science.

Lagar, Celso, 1891-1967

Lagar, Celso, 1891-1967 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The folder may include clippings, announcements, small exhibition catalogs, and other ephemeral items.

Coherence Techniques at Extreme Ultraviolet Wavelengths

Coherence Techniques at Extreme Ultraviolet Wavelengths PDF Author: Zhang Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 254

Get Book Here

Book Description


Development of Extreme Ultraviolet and Soft X-ray Multilayer Optics for Scientific Studies with Femtosecond/attosecond Sources

Development of Extreme Ultraviolet and Soft X-ray Multilayer Optics for Scientific Studies with Femtosecond/attosecond Sources PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 146

Get Book Here

Book Description
The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.