Author: Jin Zhong Zhang
Publisher: World Scientific
ISBN: 981446936X
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Optical properties are among the most fascinating and useful properties of nanomaterials and have been extensively studied using a variety of optical spectroscopic techniques. A basic understanding of the optical properties and related spectroscopic techniques is essential for anyone who is interested in learning about nanomaterials of semiconductors, insulators or metal. This is partly because optical properties are intimately related to other properties and functionalities (e.g. electronic, magnetic, and thermal) that are of fundamental importance to many technological applications, such as energy conversion, chemical analysis, biomedicine, optoelectronics, communication, and radiation detection.Intentionally designed for upper-level undergraduate students and beginning graduate students with some basic knowledge of quantum mechanics, this book provides the first systematic coverage of optical properties and spectroscopic techniques of nanomaterials.
Optical Properties And Spectroscopy Of Nanomaterials
Author: Jin Zhong Zhang
Publisher: World Scientific
ISBN: 981446936X
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Optical properties are among the most fascinating and useful properties of nanomaterials and have been extensively studied using a variety of optical spectroscopic techniques. A basic understanding of the optical properties and related spectroscopic techniques is essential for anyone who is interested in learning about nanomaterials of semiconductors, insulators or metal. This is partly because optical properties are intimately related to other properties and functionalities (e.g. electronic, magnetic, and thermal) that are of fundamental importance to many technological applications, such as energy conversion, chemical analysis, biomedicine, optoelectronics, communication, and radiation detection.Intentionally designed for upper-level undergraduate students and beginning graduate students with some basic knowledge of quantum mechanics, this book provides the first systematic coverage of optical properties and spectroscopic techniques of nanomaterials.
Publisher: World Scientific
ISBN: 981446936X
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Optical properties are among the most fascinating and useful properties of nanomaterials and have been extensively studied using a variety of optical spectroscopic techniques. A basic understanding of the optical properties and related spectroscopic techniques is essential for anyone who is interested in learning about nanomaterials of semiconductors, insulators or metal. This is partly because optical properties are intimately related to other properties and functionalities (e.g. electronic, magnetic, and thermal) that are of fundamental importance to many technological applications, such as energy conversion, chemical analysis, biomedicine, optoelectronics, communication, and radiation detection.Intentionally designed for upper-level undergraduate students and beginning graduate students with some basic knowledge of quantum mechanics, this book provides the first systematic coverage of optical properties and spectroscopic techniques of nanomaterials.
Optical Properties and Spectroscopy of Nanomaterials
Author: Jin Z. Zhang
Publisher: World Scientific Publishing Company
ISBN: 9789812836656
Category : Nanostructured materials
Languages : en
Pages : 0
Book Description
1. Introduction -- 2. Spectroscopic techniques for studying optical properties of nanomaterials. 2.1. UV-visible electronic absorption spectroscopy. 2.2. Photoluminescence and electroluminescence spectroscopy. 2.3. Infrared (IR) and Raman vibrational spectroscopy. 2.4. Time-resolved optical spectroscopy. 2.5. Nonlinear optical spectroscopy : harmonic generation and up-conversion. 2.6. Single nanoparticle and single molecule spectroscopy. 2.7. Dynamic light scattering (DLS). 2.8. Summary -- 3. Other experimental techniques : electron microscopy and X-ray. 3.1. Microscopy : AFM, STM, SEM and TEM. 3.2. X-ray : XRD, XPS, and XAFS, SAXS. 3.3. Electrochemistry and photoelectrochemistry. 3.4. Nuclear magnetic resonance (NMR) and electron spin resonance (ESR). 3.5. Summary -- 4. Synthesis and fabrication of nanomaterials. 4.1. Solution chemical methods. 4.2. Gas or vapor-based methods of synthesis : CVD, MOCVD and MBE. 4.3. Nanolithography techniques. 4.4. Bioconjugation. 4.5. Toxicity and green chemistry approaches for synthesis. 4.6. Summary -- Optical properties of semiconductor nanomaterials. 5.1. Some basic concepts about semiconductors. 5.2. Energy levels and density of states in reduced dimension systems. 5.3. Electronic structure and electronic properties. 5.4. Optical properties of semiconductor nanomaterials. 5.5. Doped semiconductors : absorption and luminescence. 5.6. Nonlinear optical properties. 5.7. Optical properties of single particles. 5.8. Summary -- 6. Optical properties of metal oxide nanomaterials. 6.1. Optical absorption. 6.2. Optical emission. 6.3. Other optical properties : doped and sensitized metal oxides. 6.4. Nonlinear optical properties : luminescence up-conversion (LUC). 6.5. Summary -- 7. Optical properties of metal nanomaterials. 7.1. Strong absorption and lack of photoemission. 7.2. Surface plasmon resonance (SPR). 7.3. Correlation between structure and SPR : a theoretical perspective. 7.4. Surface enhanced Raman scattering (SERS). 7.5. Summary -- 8. Optical properties of composite nanostructures. 8.1. Inorganic semiconductor-insulator and semiconductor-semiconductor. 8.2. Inorganic metal-insulator. 8.3. Inorganic semiconductor-metal. 8.4. Inorganic-organic (polymer). 8.5. Inorganic-biological materials. 8.6. Summary -- 9. Charge carrier dynamics in nanomaterials. 9.1. Experimental techniques for dynamics studies in nanomaterials. 9.2. Electron and photon relaxation dynamics in metal nanomaterials. 9.3. Charge carrier dynamics in semiconductor nanomaterials. 9.4. Charge carrier dynamics in metal oxide and insulator nanomaterials. 9.5. Photoinduced charge transfer dynamics. 9.6. Summary -- 10. Applications of optical properties of nanomaterials. 10.1. Chemical and biomedical detection, imaging and therapy. 10.2. Energy conversion : PV and PEC. 10.3. Environmental protection : photocatalytic and photochemical reactions. 10.4. Lasers, LEDs, and solid state lighting. 10.5. Optical filters : photonic bandgap materials or photonic crystals. 10.6. Summary
Publisher: World Scientific Publishing Company
ISBN: 9789812836656
Category : Nanostructured materials
Languages : en
Pages : 0
Book Description
1. Introduction -- 2. Spectroscopic techniques for studying optical properties of nanomaterials. 2.1. UV-visible electronic absorption spectroscopy. 2.2. Photoluminescence and electroluminescence spectroscopy. 2.3. Infrared (IR) and Raman vibrational spectroscopy. 2.4. Time-resolved optical spectroscopy. 2.5. Nonlinear optical spectroscopy : harmonic generation and up-conversion. 2.6. Single nanoparticle and single molecule spectroscopy. 2.7. Dynamic light scattering (DLS). 2.8. Summary -- 3. Other experimental techniques : electron microscopy and X-ray. 3.1. Microscopy : AFM, STM, SEM and TEM. 3.2. X-ray : XRD, XPS, and XAFS, SAXS. 3.3. Electrochemistry and photoelectrochemistry. 3.4. Nuclear magnetic resonance (NMR) and electron spin resonance (ESR). 3.5. Summary -- 4. Synthesis and fabrication of nanomaterials. 4.1. Solution chemical methods. 4.2. Gas or vapor-based methods of synthesis : CVD, MOCVD and MBE. 4.3. Nanolithography techniques. 4.4. Bioconjugation. 4.5. Toxicity and green chemistry approaches for synthesis. 4.6. Summary -- Optical properties of semiconductor nanomaterials. 5.1. Some basic concepts about semiconductors. 5.2. Energy levels and density of states in reduced dimension systems. 5.3. Electronic structure and electronic properties. 5.4. Optical properties of semiconductor nanomaterials. 5.5. Doped semiconductors : absorption and luminescence. 5.6. Nonlinear optical properties. 5.7. Optical properties of single particles. 5.8. Summary -- 6. Optical properties of metal oxide nanomaterials. 6.1. Optical absorption. 6.2. Optical emission. 6.3. Other optical properties : doped and sensitized metal oxides. 6.4. Nonlinear optical properties : luminescence up-conversion (LUC). 6.5. Summary -- 7. Optical properties of metal nanomaterials. 7.1. Strong absorption and lack of photoemission. 7.2. Surface plasmon resonance (SPR). 7.3. Correlation between structure and SPR : a theoretical perspective. 7.4. Surface enhanced Raman scattering (SERS). 7.5. Summary -- 8. Optical properties of composite nanostructures. 8.1. Inorganic semiconductor-insulator and semiconductor-semiconductor. 8.2. Inorganic metal-insulator. 8.3. Inorganic semiconductor-metal. 8.4. Inorganic-organic (polymer). 8.5. Inorganic-biological materials. 8.6. Summary -- 9. Charge carrier dynamics in nanomaterials. 9.1. Experimental techniques for dynamics studies in nanomaterials. 9.2. Electron and photon relaxation dynamics in metal nanomaterials. 9.3. Charge carrier dynamics in semiconductor nanomaterials. 9.4. Charge carrier dynamics in metal oxide and insulator nanomaterials. 9.5. Photoinduced charge transfer dynamics. 9.6. Summary -- 10. Applications of optical properties of nanomaterials. 10.1. Chemical and biomedical detection, imaging and therapy. 10.2. Energy conversion : PV and PEC. 10.3. Environmental protection : photocatalytic and photochemical reactions. 10.4. Lasers, LEDs, and solid state lighting. 10.5. Optical filters : photonic bandgap materials or photonic crystals. 10.6. Summary
Optical Properties of Metallic Nanoparticles
Author: Andreas Trügler
Publisher: Springer
ISBN: 3319250744
Category : Science
Languages : en
Pages : 227
Book Description
This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructures. This model based on this framework is first solved analytically for simple systems, and subsequently through numerical simulations for more general cases where, for example, surface roughness, nonlinear and nonlocal effects or metamaterials are investigated.
Publisher: Springer
ISBN: 3319250744
Category : Science
Languages : en
Pages : 227
Book Description
This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructures. This model based on this framework is first solved analytically for simple systems, and subsequently through numerical simulations for more general cases where, for example, surface roughness, nonlinear and nonlocal effects or metamaterials are investigated.
UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization
Author: Challa S.S.R. Kumar
Publisher: Springer Science & Business Media
ISBN: 364227594X
Category : Science
Languages : en
Pages : 604
Book Description
Second volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about UV-visible and photoluminescence spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry in the related fields.
Publisher: Springer Science & Business Media
ISBN: 364227594X
Category : Science
Languages : en
Pages : 604
Book Description
Second volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about UV-visible and photoluminescence spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry in the related fields.
Optical Properties of Semiconductor Nanocrystals
Author: S. V. Gaponenko
Publisher: Cambridge University Press
ISBN: 0521582415
Category : Science
Languages : en
Pages : 263
Book Description
Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 0521582415
Category : Science
Languages : en
Pages : 263
Book Description
Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.
Semiconductor Nanomaterials
Author: Challa S. S. R. Kumar
Publisher: John Wiley & Sons
ISBN: 3527321667
Category : Technology & Engineering
Languages : en
Pages : 499
Book Description
The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 6 - Semiconductor Nanomaterials
Publisher: John Wiley & Sons
ISBN: 3527321667
Category : Technology & Engineering
Languages : en
Pages : 499
Book Description
The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 6 - Semiconductor Nanomaterials
Applications of Nanomaterials
Author: Sneha Bhagyaraj
Publisher: Woodhead Publishing
ISBN: 0081019726
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
Applications of Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area. Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems. - Provides an up-to-date data record on the synthesis of all kinds of organic and inorganic nanostructures using various physical and chemical methods - Presents the latest advances in synthesis protocols - Includes the latest techniques used in the physical and chemical characterization of nanomaterials - Covers the characterization of all the important materials groups, such as carbon nanostructures, core-shell quantum dots, metal and metal oxide nanostructures, nanoferrites, polymer nanostructures and nanofibers
Publisher: Woodhead Publishing
ISBN: 0081019726
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
Applications of Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area. Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems. - Provides an up-to-date data record on the synthesis of all kinds of organic and inorganic nanostructures using various physical and chemical methods - Presents the latest advances in synthesis protocols - Includes the latest techniques used in the physical and chemical characterization of nanomaterials - Covers the characterization of all the important materials groups, such as carbon nanostructures, core-shell quantum dots, metal and metal oxide nanostructures, nanoferrites, polymer nanostructures and nanofibers
Fundamentals, Properties, and Applications of Polymer Nanocomposites
Author: Joseph H. Koo
Publisher: Cambridge University Press
ISBN: 1316094413
Category : Technology & Engineering
Languages : en
Pages : 719
Book Description
This book is focused primarily on polymer nanocomposites, based on the author's research experience as well as open literature. The environmental health and safety aspects of nanomaterials and polymer nanocomposites, risk assessment and safety standards, and fire toxicity of polymer nanocomposites, are studied. In the final chapter, a brief overview of opportunities, trends, and challenges of polymer nanocomposites are included. Throughout the book, the theme is developed that polymer nanocomposites are a whole family of polymeric materials whose properties are capable of being tailored to meet specific applications. This volume serves as a general introduction to students and researchers just entering the field and to scholars from other subfields seeking information.
Publisher: Cambridge University Press
ISBN: 1316094413
Category : Technology & Engineering
Languages : en
Pages : 719
Book Description
This book is focused primarily on polymer nanocomposites, based on the author's research experience as well as open literature. The environmental health and safety aspects of nanomaterials and polymer nanocomposites, risk assessment and safety standards, and fire toxicity of polymer nanocomposites, are studied. In the final chapter, a brief overview of opportunities, trends, and challenges of polymer nanocomposites are included. Throughout the book, the theme is developed that polymer nanocomposites are a whole family of polymeric materials whose properties are capable of being tailored to meet specific applications. This volume serves as a general introduction to students and researchers just entering the field and to scholars from other subfields seeking information.
Spectroscopy of Polymer Nanocomposites
Author: Sabu Thomas
Publisher: William Andrew
ISBN: 0323413919
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Spectroscopy of Polymer Nanocomposites covers all aspects of the spectroscopic characterization of polymer nanocomposites. More than 25 spectroscopy characterization techniques – almost all used in materials science – are treated in the book, with discussion of their potentialities and limitations. By comparing the techniques with each other and presenting the techniques together with their specific application areas, the book provides scientists and engineers the information needed for solving specific problems and choosing the right technique for analyzing the material structure. From this, the dispersion structure of fillers, property relations and filler-polymer interactions can be determined, and, ultimately, the right materials can be chosen for the right applications. Besides the techniques and structure-property relations, aspects covered include: phase segregation of filler particles, filler agglomeration and deagglomeration, filler dispersion, filler-polymer interactions, surfaces and interfaces. The book also examines recent developments, as well as unresolved issues and new challenges, in the characterization of surfaces and interfaces in polymer nanocomposites. This handpicked selection of topics, and the combined expertise of contributors from industry, academia, government and private research organizations across the globe, make this survey an outstanding reference source for anyone involved in the field of polymer nanocomposites in academia or industry. - Provides comprehensive coverage of spectroscopy techniques for analyzing polymer nanocomposites - Enables researchers and engineers to choose the right technique and make better materials decisions in research and a range of industries - Presents the fundamentals, information on structure-property relations, and all other aspects relevant for understanding spectroscopic analyses of nanoreinforced polymers and their applications
Publisher: William Andrew
ISBN: 0323413919
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Spectroscopy of Polymer Nanocomposites covers all aspects of the spectroscopic characterization of polymer nanocomposites. More than 25 spectroscopy characterization techniques – almost all used in materials science – are treated in the book, with discussion of their potentialities and limitations. By comparing the techniques with each other and presenting the techniques together with their specific application areas, the book provides scientists and engineers the information needed for solving specific problems and choosing the right technique for analyzing the material structure. From this, the dispersion structure of fillers, property relations and filler-polymer interactions can be determined, and, ultimately, the right materials can be chosen for the right applications. Besides the techniques and structure-property relations, aspects covered include: phase segregation of filler particles, filler agglomeration and deagglomeration, filler dispersion, filler-polymer interactions, surfaces and interfaces. The book also examines recent developments, as well as unresolved issues and new challenges, in the characterization of surfaces and interfaces in polymer nanocomposites. This handpicked selection of topics, and the combined expertise of contributors from industry, academia, government and private research organizations across the globe, make this survey an outstanding reference source for anyone involved in the field of polymer nanocomposites in academia or industry. - Provides comprehensive coverage of spectroscopy techniques for analyzing polymer nanocomposites - Enables researchers and engineers to choose the right technique and make better materials decisions in research and a range of industries - Presents the fundamentals, information on structure-property relations, and all other aspects relevant for understanding spectroscopic analyses of nanoreinforced polymers and their applications
Handbook Of Carbon Nanomaterials (Volumes 9-10)
Author: R Bruce Weisman
Publisher: World Scientific
ISBN: 9813235470
Category : Science
Languages : en
Pages : 810
Book Description
This volume is a tribute to the career of Prof. Mildred Dresselhaus. It focuses on the optical properties and spectroscopy of single-wall carbon nanotubes. It contains chapters on diverse experimental and theoretical aspects of the field, written by internationally recognized experts. The volume serves as an important resource for researchers and students interested in carbon nanotubes.
Publisher: World Scientific
ISBN: 9813235470
Category : Science
Languages : en
Pages : 810
Book Description
This volume is a tribute to the career of Prof. Mildred Dresselhaus. It focuses on the optical properties and spectroscopy of single-wall carbon nanotubes. It contains chapters on diverse experimental and theoretical aspects of the field, written by internationally recognized experts. The volume serves as an important resource for researchers and students interested in carbon nanotubes.