Optical and Electronic Characterization of Organic Monolayers on Si(001)

Optical and Electronic Characterization of Organic Monolayers on Si(001) PDF Author: Christina Ann Hacker
Publisher:
ISBN:
Category :
Languages : en
Pages : 216

Get Book Here

Book Description

Optical and Electronic Characterization of Organic Monolayers on Si(001)

Optical and Electronic Characterization of Organic Monolayers on Si(001) PDF Author: Christina Ann Hacker
Publisher:
ISBN:
Category :
Languages : en
Pages : 216

Get Book Here

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 924

Get Book Here

Book Description


Molecular Electronics: Volume 582

Molecular Electronics: Volume 582 PDF Author: Sokrates T. Pantelides
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 144

Get Book Here

Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.

American Doctoral Dissertations

American Doctoral Dissertations PDF Author:
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 776

Get Book Here

Book Description


Activity report

Activity report PDF Author: Brookhaven National Laboratory. National Synchrotron Light Source
Publisher:
ISBN:
Category :
Languages : en
Pages : 226

Get Book Here

Book Description


Fundamentals of Silicon Carbide Technology

Fundamentals of Silicon Carbide Technology PDF Author: Tsunenobu Kimoto
Publisher: John Wiley & Sons
ISBN: 1118313526
Category : Technology & Engineering
Languages : en
Pages : 565

Get Book Here

Book Description
A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Japanese Journal of Applied Physics

Japanese Journal of Applied Physics PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 332

Get Book Here

Book Description


Silicon Surfaces and Formation of Interfaces

Silicon Surfaces and Formation of Interfaces PDF Author: Jarek Dabrowski
Publisher: World Scientific
ISBN: 9789810232863
Category : Science
Languages : en
Pages : 580

Get Book Here

Book Description
Silicon, the basic material for a multibillion-dollar industry, is the most widely researched and applied semiconductor, and its surfaces are the most thoroughly studied of all semiconductor surfaces. Silicon Surfaces and Formation of Interfaces may be used as an introduction to graduate-level physics and chemical physics. Moreover, it gives a specialized and comprehensive description of the most common faces of silicon crystals as well as their interaction with adsorbates and overlayers. This knowledge is presented in a systematic and easy-to-follow way. Discussion of each system is preceded by a brief overview which categorizes the features and physical mechanisms before the details are presented. The literature is easily available, and the references am numerous and organized in tables, allowing a search without the need to browse through the text. Though this volume focuses on a scientific understanding of physics on the atomistic and mesoscopic levels, it also highlights existing and potential links between basic research in surface science and applications in the silicon industry. It will be valuable to anyone writing a paper, thesis, or proposal in the field of silicon surfaces.

Optical Characterization of Epitaxial Semiconductor Layers

Optical Characterization of Epitaxial Semiconductor Layers PDF Author: Günther Bauer
Publisher: Springer Science & Business Media
ISBN: 3642796788
Category : Technology & Engineering
Languages : en
Pages : 446

Get Book Here

Book Description
The characterization of epitaxial layers and their surfaces has benefitted a lot from the enormous progress of optical analysis techniques during the last decade. In particular, the dramatic improvement of the structural quality of semiconductor epilayers and heterostructures results to a great deal from the level of sophistication achieved with such analysis techniques. First of all, optical techniques are nondestructive and their sensitivity has been improved to such an extent that nowadays the epilayer analysis can be performed on layers with thicknesses on the atomic scale. Furthermore, the spatial and temporal resolution have been pushed to such limits that real time observation of surface processes during epitaxial growth is possible with techniques like reflectance difference spectroscopy. Of course, optical spectroscopies complement techniques based on the inter action of electrons with matter, but whereas the latter usually require high or ultrahigh vacuum conditions, the former ones can be applied in different environments as well. This advantage could turn out extremely important for a rather technological point of view, i.e. for the surveillance of modern semiconductor processes. Despite the large potential of techniques based on the interaction of electromagnetic waves with surfaces and epilayers, optical techniques are apparently moving only slowly into this area of technology. One reason for this might be that some prejudices still exist regarding their sensitivity.

Microlenses

Microlenses PDF Author: Hongrui Jiang
Publisher: CRC Press
ISBN: 1439836698
Category : Technology & Engineering
Languages : en
Pages : 231

Get Book Here

Book Description
Due to the development of microscale fabrication methods, microlenses are being used more and more in many unique applications, such as artificial implementations of compound eyes, optical communications, and labs-on-chips. Liquid microlenses, in particular, represent an important and growing research area yet there are no books devoted to this topic that summarize the research to date. Rectifying this deficiency, Microlenses: Properties, Fabrication and Liquid Lenses examines the recent progress in the emerging field of liquid-based microlenses. After describing how certain problems in optics can be solved by liquid microlenses, the book introduces the physics and fabrication methods involved in microlenses. It also details the facility and equipment requirements for general fabrication methods. The authors then present examples of various microlenses with non-tunable and tunable focal lengths based on different mechanisms, including: Non-tunable microlenses: Ge/SiO2 core/shell nanolenses, glass lenses made by isotropic etching, self-assembled lenses and lens arrays, lenses fabricated by direct photo-induced polymerization, lenses formed by thermally reflowing photoresist, lenses formed from inkjet printing, arrays fabricated through molding processes, and injection-molded plastic lenses Electrically tuned microlenses: liquid crystal-based lenses and liquid lenses driven by electrostatic forces, dielectrophoretic forces, electrowetting, and electrochemical reactions Mechanically tunable microlenses: thin-membrane lenses with varying apertures, pressures, and surface shapes; swellable hydrogel lenses; liquid–liquid interface lenses actuated by environmentally stimuli-responsive hydrogels; and oscillating lens arrays driven by sound waves Horizontal microlenses: two-dimensional polymer lenses, tunable and movable liquid droplets as lenses, hydrodynamically tuned cylindrical lenses, liquid core and liquid cladding lenses, air–liquid interface lenses, and tunable liquid gradient refractive index lenses The book concludes by summarizing the importance of microlenses, shedding light on future microlens work, and exploring related challenges, such as the packaging of systems, effects of gravity, evaporation of liquids, aberrations, and integration with other optical components.