Author: Donald E. Brown
Publisher: Springer Science & Business Media
ISBN: 9400922035
Category : Business & Economics
Languages : en
Pages : 503
Book Description
The purpose of this book is to introduce and explain research at the boundary between two fields that view problem solving from different perspectives. Researchers in operations research and artificial intelligence have traditionally remained separate in their activities. Recently, there has been an explosion of work at the border of the two fields, as members of both communities seek to leverage their activities and resolve problems that remain intractable to pure operations research or artificial intelligence techniques. This book presents representative results from this current flurry of activity and provides insights into promising directions for continued exploration. This book should be of special interest to researchers in artificial intelligence and operations research because it exposes a number of applications and techniques, which have benefited from the integration of problem solving strategies. Even researchers working on different applications or with different techniques can benefit from the descriptions contained here, because they provide insight into effective methods for combining approaches from the two fields. Additionally, researchers in both communities will find a wealth of pointers to challenging new problems and potential opportunities that exist at the interface between operations research and artificial intelligence. In addition to the obvious interest the book should have for members of the operations research and artificial intelligence communities, the papers here are also relevant to members of other research communities and development activities that can benefit from improvements to fundamental problem solving approaches.
Operations Research and Artificial Intelligence: The Integration of Problem-Solving Strategies
Author: Donald E. Brown
Publisher: Springer Science & Business Media
ISBN: 9400922035
Category : Business & Economics
Languages : en
Pages : 503
Book Description
The purpose of this book is to introduce and explain research at the boundary between two fields that view problem solving from different perspectives. Researchers in operations research and artificial intelligence have traditionally remained separate in their activities. Recently, there has been an explosion of work at the border of the two fields, as members of both communities seek to leverage their activities and resolve problems that remain intractable to pure operations research or artificial intelligence techniques. This book presents representative results from this current flurry of activity and provides insights into promising directions for continued exploration. This book should be of special interest to researchers in artificial intelligence and operations research because it exposes a number of applications and techniques, which have benefited from the integration of problem solving strategies. Even researchers working on different applications or with different techniques can benefit from the descriptions contained here, because they provide insight into effective methods for combining approaches from the two fields. Additionally, researchers in both communities will find a wealth of pointers to challenging new problems and potential opportunities that exist at the interface between operations research and artificial intelligence. In addition to the obvious interest the book should have for members of the operations research and artificial intelligence communities, the papers here are also relevant to members of other research communities and development activities that can benefit from improvements to fundamental problem solving approaches.
Publisher: Springer Science & Business Media
ISBN: 9400922035
Category : Business & Economics
Languages : en
Pages : 503
Book Description
The purpose of this book is to introduce and explain research at the boundary between two fields that view problem solving from different perspectives. Researchers in operations research and artificial intelligence have traditionally remained separate in their activities. Recently, there has been an explosion of work at the border of the two fields, as members of both communities seek to leverage their activities and resolve problems that remain intractable to pure operations research or artificial intelligence techniques. This book presents representative results from this current flurry of activity and provides insights into promising directions for continued exploration. This book should be of special interest to researchers in artificial intelligence and operations research because it exposes a number of applications and techniques, which have benefited from the integration of problem solving strategies. Even researchers working on different applications or with different techniques can benefit from the descriptions contained here, because they provide insight into effective methods for combining approaches from the two fields. Additionally, researchers in both communities will find a wealth of pointers to challenging new problems and potential opportunities that exist at the interface between operations research and artificial intelligence. In addition to the obvious interest the book should have for members of the operations research and artificial intelligence communities, the papers here are also relevant to members of other research communities and development activities that can benefit from improvements to fundamental problem solving approaches.
Operations Research and Artificial Intelligence: The Integration of Problem-Solving Strategies
Author: Donald E. Brown
Publisher: Springer Science & Business Media
ISBN: 9780792391067
Category : Business & Economics
Languages : en
Pages : 538
Book Description
The purpose of this book is to introduce and explain research at the boundary between two fields that view problem solving from different perspectives. Researchers in operations research and artificial intelligence have traditionally remained separate in their activities. Recently, there has been an explosion of work at the border of the two fields, as members of both communities seek to leverage their activities and resolve problems that remain intractable to pure operations research or artificial intelligence techniques. This book presents representative results from this current flurry of activity and provides insights into promising directions for continued exploration. This book should be of special interest to researchers in artificial intelligence and operations research because it exposes a number of applications and techniques, which have benefited from the integration of problem solving strategies. Even researchers working on different applications or with different techniques can benefit from the descriptions contained here, because they provide insight into effective methods for combining approaches from the two fields. Additionally, researchers in both communities will find a wealth of pointers to challenging new problems and potential opportunities that exist at the interface between operations research and artificial intelligence. In addition to the obvious interest the book should have for members of the operations research and artificial intelligence communities, the papers here are also relevant to members of other research communities and development activities that can benefit from improvements to fundamental problem solving approaches.
Publisher: Springer Science & Business Media
ISBN: 9780792391067
Category : Business & Economics
Languages : en
Pages : 538
Book Description
The purpose of this book is to introduce and explain research at the boundary between two fields that view problem solving from different perspectives. Researchers in operations research and artificial intelligence have traditionally remained separate in their activities. Recently, there has been an explosion of work at the border of the two fields, as members of both communities seek to leverage their activities and resolve problems that remain intractable to pure operations research or artificial intelligence techniques. This book presents representative results from this current flurry of activity and provides insights into promising directions for continued exploration. This book should be of special interest to researchers in artificial intelligence and operations research because it exposes a number of applications and techniques, which have benefited from the integration of problem solving strategies. Even researchers working on different applications or with different techniques can benefit from the descriptions contained here, because they provide insight into effective methods for combining approaches from the two fields. Additionally, researchers in both communities will find a wealth of pointers to challenging new problems and potential opportunities that exist at the interface between operations research and artificial intelligence. In addition to the obvious interest the book should have for members of the operations research and artificial intelligence communities, the papers here are also relevant to members of other research communities and development activities that can benefit from improvements to fundamental problem solving approaches.
Operations Research and Artificial Intelligence
Author: C. W. Holsapple
Publisher: Intellect Books
ISBN: 9781567500363
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
This book provides conceptual underpinnings for relating artificial intelligence (AI) to operation research (OR). It includes tutorials on basic AI tools and techniques with thorough reference lists, as well as suggestive examples that connect AI and OR in various ways.
Publisher: Intellect Books
ISBN: 9781567500363
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
This book provides conceptual underpinnings for relating artificial intelligence (AI) to operation research (OR). It includes tutorials on basic AI tools and techniques with thorough reference lists, as well as suggestive examples that connect AI and OR in various ways.
Integrated Methods for Optimization
Author: John N. Hooker
Publisher: Springer Science & Business Media
ISBN: 146141900X
Category : Business & Economics
Languages : en
Pages : 655
Book Description
The first edition of Integrated Methods for Optimization was published in January 2007. Because the book covers a rapidly developing field, the time is right for a second edition. The book provides a unified treatment of optimization methods. It brings ideas from mathematical programming (MP), constraint programming (CP), and global optimization (GO)into a single volume. There is no reason these must be learned as separate fields, as they normally are, and there are three reasons they should be studied together. (1) There is much in common among them intellectually, and to a large degree they can be understood as special cases of a single underlying solution technology. (2) A growing literature reports how they can be profitably integrated to formulate and solve a wide range of problems. (3) Several software packages now incorporate techniques from two or more of these fields. The book provides a unique resource for graduate students and practitioners who want a well-rounded background in optimization methods within a single course of study. Engineering students are a particularly large potential audience, because engineering optimization problems often benefit from a combined approach—particularly where design, scheduling, or logistics are involved. The text is also of value to those studying operations research, because their educational programs rarely cover CP, and to those studying computer science and artificial intelligence (AI), because their curric ula typically omit MP and GO. The text is also useful for practitioners in any of these areas who want to learn about another, because it provides a more concise and accessible treatment than other texts. The book can cover so wide a range of material because it focuses on ideas that arerelevant to the methods used in general-purpose optimization and constraint solvers. The book focuses on ideas behind the methods that have proved useful in general-purpose optimization and constraint solvers, as well as integrated solvers of the present and foreseeable future. The second edition updates results in this area and includes several major new topics: Background material in linear, nonlinear, and dynamic programming. Network flow theory, due to its importance in filtering algorithms. A chapter on generalized duality theory that more explicitly develops a unifying primal-dual algorithmic structure for optimization methods. An extensive survey of search methods from both MP and AI, using the primal-dual framework as an organizing principle. Coverage of several additional global constraints used in CP solvers. The book continues to focus on exact as opposed to heuristic methods. It is possible to bring heuristic methods into the unifying scheme described in the book, and the new edition will retain the brief discussion of how this might be done.
Publisher: Springer Science & Business Media
ISBN: 146141900X
Category : Business & Economics
Languages : en
Pages : 655
Book Description
The first edition of Integrated Methods for Optimization was published in January 2007. Because the book covers a rapidly developing field, the time is right for a second edition. The book provides a unified treatment of optimization methods. It brings ideas from mathematical programming (MP), constraint programming (CP), and global optimization (GO)into a single volume. There is no reason these must be learned as separate fields, as they normally are, and there are three reasons they should be studied together. (1) There is much in common among them intellectually, and to a large degree they can be understood as special cases of a single underlying solution technology. (2) A growing literature reports how they can be profitably integrated to formulate and solve a wide range of problems. (3) Several software packages now incorporate techniques from two or more of these fields. The book provides a unique resource for graduate students and practitioners who want a well-rounded background in optimization methods within a single course of study. Engineering students are a particularly large potential audience, because engineering optimization problems often benefit from a combined approach—particularly where design, scheduling, or logistics are involved. The text is also of value to those studying operations research, because their educational programs rarely cover CP, and to those studying computer science and artificial intelligence (AI), because their curric ula typically omit MP and GO. The text is also useful for practitioners in any of these areas who want to learn about another, because it provides a more concise and accessible treatment than other texts. The book can cover so wide a range of material because it focuses on ideas that arerelevant to the methods used in general-purpose optimization and constraint solvers. The book focuses on ideas behind the methods that have proved useful in general-purpose optimization and constraint solvers, as well as integrated solvers of the present and foreseeable future. The second edition updates results in this area and includes several major new topics: Background material in linear, nonlinear, and dynamic programming. Network flow theory, due to its importance in filtering algorithms. A chapter on generalized duality theory that more explicitly develops a unifying primal-dual algorithmic structure for optimization methods. An extensive survey of search methods from both MP and AI, using the primal-dual framework as an organizing principle. Coverage of several additional global constraints used in CP solvers. The book continues to focus on exact as opposed to heuristic methods. It is possible to bring heuristic methods into the unifying scheme described in the book, and the new edition will retain the brief discussion of how this might be done.
Deep Learning and the Game of Go
Author: Kevin Ferguson
Publisher: Simon and Schuster
ISBN: 1638354014
Category : Computers
Languages : en
Pages : 611
Book Description
Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning
Publisher: Simon and Schuster
ISBN: 1638354014
Category : Computers
Languages : en
Pages : 611
Book Description
Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning
Law, Computer Science, and Artificial Intelligence
Author: Ajit Narayanan
Publisher: Intellect Books
ISBN: 9781871516593
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
This text examines the interaction between the disciplines of law, computer science and artificial intelligence. The chapters are grouped into theory, implications and applications sections, in an attempt to identify separate, but interrelated methodological stances
Publisher: Intellect Books
ISBN: 9781871516593
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
This text examines the interaction between the disciplines of law, computer science and artificial intelligence. The chapters are grouped into theory, implications and applications sections, in an attempt to identify separate, but interrelated methodological stances
Operations Research and Enterprise Systems
Author: Greg H. Parlier
Publisher: Springer
ISBN: 3030160351
Category : Computers
Languages : en
Pages : 254
Book Description
This book constitutes revised selected papers from the 7th International Conference on Operations Research and Enterprise Systems, ICORES 2018, held in Funchal, Madeira, Portugal, in January 2018. The 12 papers presented in this volume were carefully reviewed and selected from a total of 59 submissions. They are organized in topical sections named: methodologies and technologies; and applications.
Publisher: Springer
ISBN: 3030160351
Category : Computers
Languages : en
Pages : 254
Book Description
This book constitutes revised selected papers from the 7th International Conference on Operations Research and Enterprise Systems, ICORES 2018, held in Funchal, Madeira, Portugal, in January 2018. The 12 papers presented in this volume were carefully reviewed and selected from a total of 59 submissions. They are organized in topical sections named: methodologies and technologies; and applications.
Machine Learning and Artificial Intelligence for Agricultural Economics
Author: Chandrasekar Vuppalapati
Publisher: Springer Nature
ISBN: 3030774856
Category : Business & Economics
Languages : en
Pages : 611
Book Description
This book discusses machine learning and artificial intelligence (AI) for agricultural economics. It is written with a view towards bringing the benefits of advanced analytics and prognostics capabilities to small scale farmers worldwide. This volume provides data science and software engineering teams with the skills and tools to fully utilize economic models to develop the software capabilities necessary for creating lifesaving applications. The book introduces essential agricultural economic concepts from the perspective of full-scale software development with the emphasis on creating niche blue ocean products. Chapters detail several agricultural economic and AI reference architectures with a focus on data integration, algorithm development, regression, prognostics model development and mathematical optimization. Upgrading traditional AI software development paradigms to function in dynamic agricultural and economic markets, this volume will be of great use to researchers and students in agricultural economics, data science, engineering, and machine learning as well as engineers and industry professionals in the public and private sectors.
Publisher: Springer Nature
ISBN: 3030774856
Category : Business & Economics
Languages : en
Pages : 611
Book Description
This book discusses machine learning and artificial intelligence (AI) for agricultural economics. It is written with a view towards bringing the benefits of advanced analytics and prognostics capabilities to small scale farmers worldwide. This volume provides data science and software engineering teams with the skills and tools to fully utilize economic models to develop the software capabilities necessary for creating lifesaving applications. The book introduces essential agricultural economic concepts from the perspective of full-scale software development with the emphasis on creating niche blue ocean products. Chapters detail several agricultural economic and AI reference architectures with a focus on data integration, algorithm development, regression, prognostics model development and mathematical optimization. Upgrading traditional AI software development paradigms to function in dynamic agricultural and economic markets, this volume will be of great use to researchers and students in agricultural economics, data science, engineering, and machine learning as well as engineers and industry professionals in the public and private sectors.
Transforming Management Using Artificial Intelligence Techniques
Author: Vikas Garg
Publisher: CRC Press
ISBN: 1000209946
Category : Computers
Languages : en
Pages : 215
Book Description
Transforming Management Using Artificial Intelligence Techniques redefines management practices using artificial intelligence (AI) by providing a new approach. It offers a detailed, well-illustrated treatment of each topic with examples and case studies, and brings the exciting field to life by presenting a substantial and robust introduction to AI in a clear and concise manner. It provides a deeper understanding of how the relevant aspects of AI impact each other’s efficacy for better output. It’s a reliable and accessible one-step resource that introduces AI; presents a full examination of applications; provides an understanding of the foundations; examines education powered by AI, entertainment, home and service robots, healthcare re-imagined, predictive policing, space exploration; and so much more, all within the realm of AI. This book will feature: Uncovering new and innovative features of AI and how it can help in raising economic efficiency at both micro- and macro levels Both the literature and practical aspects of AI and its uses This book summarizing key concepts at the end of each chapter to assist reader comprehension Case studies of tried and tested approaches to resolutions of typical problems Ideal for both teaching and general-knowledge purposes. This book will also simply provide the topic of AI for the readers, aspiring researchers and practitioners involved in management and computer science, so they can obtain a high-level of understanding of AI and managerial applications.
Publisher: CRC Press
ISBN: 1000209946
Category : Computers
Languages : en
Pages : 215
Book Description
Transforming Management Using Artificial Intelligence Techniques redefines management practices using artificial intelligence (AI) by providing a new approach. It offers a detailed, well-illustrated treatment of each topic with examples and case studies, and brings the exciting field to life by presenting a substantial and robust introduction to AI in a clear and concise manner. It provides a deeper understanding of how the relevant aspects of AI impact each other’s efficacy for better output. It’s a reliable and accessible one-step resource that introduces AI; presents a full examination of applications; provides an understanding of the foundations; examines education powered by AI, entertainment, home and service robots, healthcare re-imagined, predictive policing, space exploration; and so much more, all within the realm of AI. This book will feature: Uncovering new and innovative features of AI and how it can help in raising economic efficiency at both micro- and macro levels Both the literature and practical aspects of AI and its uses This book summarizing key concepts at the end of each chapter to assist reader comprehension Case studies of tried and tested approaches to resolutions of typical problems Ideal for both teaching and general-knowledge purposes. This book will also simply provide the topic of AI for the readers, aspiring researchers and practitioners involved in management and computer science, so they can obtain a high-level of understanding of AI and managerial applications.
Reinventing Manufacturing and Business Processes Through Artificial Intelligence
Author: Geeta Rana
Publisher: CRC Press
ISBN: 1000506045
Category : Business & Economics
Languages : en
Pages : 193
Book Description
This edited book describes how newly emerging Artificial Intelligence (AI) technologies will provide unprecedented opportunities to penetrate technology and automation into everything we do, and at the same time, provide a huge playing field for businesses to develop newer models to capture market share. It establishes a milestone in understanding global transformational changes occurring in the manufacturing and corporate world due to AI and tries to find powerful and sophisticated solutions that will improve and streamline operations. Reinventing Manufacturing and Business Processes Through Artificial Intelligence will be of interest to students, researchers, and professionals of the AI community as well as interdisciplinary researchers.
Publisher: CRC Press
ISBN: 1000506045
Category : Business & Economics
Languages : en
Pages : 193
Book Description
This edited book describes how newly emerging Artificial Intelligence (AI) technologies will provide unprecedented opportunities to penetrate technology and automation into everything we do, and at the same time, provide a huge playing field for businesses to develop newer models to capture market share. It establishes a milestone in understanding global transformational changes occurring in the manufacturing and corporate world due to AI and tries to find powerful and sophisticated solutions that will improve and streamline operations. Reinventing Manufacturing and Business Processes Through Artificial Intelligence will be of interest to students, researchers, and professionals of the AI community as well as interdisciplinary researchers.