One-dimensional Stable Distributions

One-dimensional Stable Distributions PDF Author: V. M. Zolotarev
Publisher: American Mathematical Soc.
ISBN: 0821845195
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
This is the first book specifically devoted to a systematic exposition of the essential facts known about the properties of stable distributions. In addition to its main focus on the analytic properties of stable laws, the book also includes examples of the occurrence of stable distributions in applied problems and a chapter on the problem of statistical estimation of the parameters determining stable laws. A valuable feature of the book is the author's use of several formally different ways of expressing characteristic functions corresponding to these laws.

One-dimensional Stable Distributions

One-dimensional Stable Distributions PDF Author: V. M. Zolotarev
Publisher: American Mathematical Soc.
ISBN: 0821845195
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
This is the first book specifically devoted to a systematic exposition of the essential facts known about the properties of stable distributions. In addition to its main focus on the analytic properties of stable laws, the book also includes examples of the occurrence of stable distributions in applied problems and a chapter on the problem of statistical estimation of the parameters determining stable laws. A valuable feature of the book is the author's use of several formally different ways of expressing characteristic functions corresponding to these laws.

Univariate Stable Distributions

Univariate Stable Distributions PDF Author: John P. Nolan
Publisher: Springer Nature
ISBN: 3030529150
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
This textbook highlights the many practical uses of stable distributions, exploring the theory, numerical algorithms, and statistical methods used to work with stable laws. Because of the author’s accessible and comprehensive approach, readers will be able to understand and use these methods. Both mathematicians and non-mathematicians will find this a valuable resource for more accurately modelling and predicting large values in a number of real-world scenarios. Beginning with an introductory chapter that explains key ideas about stable laws, readers will be prepared for the more advanced topics that appear later. The following chapters present the theory of stable distributions, a wide range of applications, and statistical methods, with the final chapters focusing on regression, signal processing, and related distributions. Each chapter ends with a number of carefully chosen exercises. Links to free software are included as well, where readers can put these methods into practice. Univariate Stable Distributions is ideal for advanced undergraduate or graduate students in mathematics, as well as many other fields, such as statistics, economics, engineering, physics, and more. It will also appeal to researchers in probability theory who seek an authoritative reference on stable distributions.

High-Dimensional Probability

High-Dimensional Probability PDF Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299

Get Book Here

Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Lévy Processes

Lévy Processes PDF Author: Ole E Barndorff-Nielsen
Publisher: Springer Science & Business Media
ISBN: 1461201977
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.

Chance and Stability

Chance and Stability PDF Author: Vladimir V. Uchaikin
Publisher: Walter de Gruyter
ISBN: 311093597X
Category : Mathematics
Languages : en
Pages : 601

Get Book Here

Book Description
The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.

Stable Non-Gaussian Random Processes

Stable Non-Gaussian Random Processes PDF Author: Gennady Samoradnitsky
Publisher: Routledge
ISBN: 1351414801
Category : Mathematics
Languages : en
Pages : 655

Get Book Here

Book Description
This book serves as a standard reference, making this area accessible not only to researchers in probability and statistics, but also to graduate students and practitioners. The book assumes only a first-year graduate course in probability. Each chapter begins with a brief overview and concludes with a wide range of exercises at varying levels of difficulty. The authors supply detailed hints for the more challenging problems, and cover many advances made in recent years.

A Practical Guide to Heavy Tails

A Practical Guide to Heavy Tails PDF Author: Robert Adler
Publisher: Springer Science & Business Media
ISBN: 9780817639518
Category : Mathematics
Languages : en
Pages : 560

Get Book Here

Book Description
Twenty-four contributions, intended for a wide audience from various disciplines, cover a variety of applications of heavy-tailed modeling involving telecommunications, the Web, insurance, and finance. Along with discussion of specific applications are several papers devoted to time series analysis, regression, classical signal/noise detection problems, and the general structure of stable processes, viewed from a modeling standpoint. Emphasis is placed on developments in handling the numerical problems associated with stable distribution (a main technical difficulty until recently). No index. Annotation copyrighted by Book News, Inc., Portland, OR

One-Dimensional Empirical Measures, Order Statistics, and Kantorovich Transport Distances

One-Dimensional Empirical Measures, Order Statistics, and Kantorovich Transport Distances PDF Author: Sergey Bobkov
Publisher: American Mathematical Soc.
ISBN: 1470436507
Category : Education
Languages : en
Pages : 138

Get Book Here

Book Description
This work is devoted to the study of rates of convergence of the empirical measures μn=1n∑nk=1δXk, n≥1, over a sample (Xk)k≥1 of independent identically distributed real-valued random variables towards the common distribution μ in Kantorovich transport distances Wp. The focus is on finite range bounds on the expected Kantorovich distances E(Wp(μn,μ)) or [E(Wpp(μn,μ))]1/p in terms of moments and analytic conditions on the measure μ and its distribution function. The study describes a variety of rates, from the standard one 1n√ to slower rates, and both lower and upper-bounds on E(Wp(μn,μ)) for fixed n in various instances. Order statistics, reduction to uniform samples and analysis of beta distributions, inverse distribution functions, log-concavity are main tools in the investigation. Two detailed appendices collect classical and some new facts on inverse distribution functions and beta distributions and their densities necessary to the investigation.

Handbook of Heavy Tailed Distributions in Finance

Handbook of Heavy Tailed Distributions in Finance PDF Author: S.T Rachev
Publisher: Elsevier
ISBN: 0080557732
Category : Business & Economics
Languages : en
Pages : 707

Get Book Here

Book Description
The Handbooks in Finance are intended to be a definitive source for comprehensive and accessible information in the field of finance. Each individual volume in the series should present an accurate self-contained survey of a sub-field of finance, suitable for use by finance and economics professors and lecturers, professional researchers, graduate students and as a teaching supplement. The goal is to have a broad group of outstanding volumes in various areas of finance. The Handbook of Heavy Tailed Distributions in Finance is the first handbook to be published in this series.This volume presents current research focusing on heavy tailed distributions in finance. The contributions cover methodological issues, i.e., probabilistic, statistical and econometric modelling under non- Gaussian assumptions, as well as the applications of the stable and other non -Gaussian models in finance and risk management.

The Normal Distribution

The Normal Distribution PDF Author: Wlodzimierz Bryc
Publisher: Springer Science & Business Media
ISBN: 1461225604
Category : Mathematics
Languages : en
Pages : 142

Get Book Here

Book Description
This book is a concise presentation of the normal distribution on the real line and its counterparts on more abstract spaces, which we shall call the Gaussian distributions. The material is selected towards presenting characteristic properties, or characterizations, of the normal distribution. There are many such properties and there are numerous rel evant works in the literature. In this book special attention is given to characterizations generated by the so called Maxwell's Theorem of statistical mechanics, which is stated in the introduction as Theorem 0.0.1. These characterizations are of interest both intrin sically, and as techniques that are worth being aware of. The book may also serve as a good introduction to diverse analytic methods of probability theory. We use characteristic functions, tail estimates, and occasionally dive into complex analysis. In the book we also show how the characteristic properties can be used to prove important results about the Gaussian processes and the abstract Gaussian vectors. For instance, in Section 5.4 we present Fernique's beautiful proofs of the zero-one law and of the integrability of abstract Gaussian vectors. The central limit theorem is obtained via characterizations in Section 7.3.