The Laws of Large Numbers

The Laws of Large Numbers PDF Author: Pál Révész
Publisher: Academic Press
ISBN: 1483269027
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
The Law of Large Numbers deals with three types of law of large numbers according to the following convergences: stochastic, mean, and convergence with probability 1. The book also investigates the rate of convergence and the laws of the iterated logarithm. It reviews measure theory, probability theory, stochastic processes, ergodic theory, orthogonal series, Huber spaces, Banach spaces, as well as the special concepts and general theorems of the laws of large numbers. The text discusses the laws of large numbers of different classes of stochastic processes, such as independent random variables, orthogonal random variables, stationary sequences, symmetrically dependent random variables and their generalizations, and also Markov chains. It presents other laws of large numbers for subsequences of sequences of random variables, including some general laws of large numbers which are not related to any concrete class of stochastic processes. The text cites applications of the theorems, as in numbers theory, statistics, and information theory. The text is suitable for mathematicians, economists, scientists, statisticians, or researchers involved with the probability and relative frequency of large numbers.

The Laws of Large Numbers

The Laws of Large Numbers PDF Author: Pál Révész
Publisher: Academic Press
ISBN: 1483269027
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
The Law of Large Numbers deals with three types of law of large numbers according to the following convergences: stochastic, mean, and convergence with probability 1. The book also investigates the rate of convergence and the laws of the iterated logarithm. It reviews measure theory, probability theory, stochastic processes, ergodic theory, orthogonal series, Huber spaces, Banach spaces, as well as the special concepts and general theorems of the laws of large numbers. The text discusses the laws of large numbers of different classes of stochastic processes, such as independent random variables, orthogonal random variables, stationary sequences, symmetrically dependent random variables and their generalizations, and also Markov chains. It presents other laws of large numbers for subsequences of sequences of random variables, including some general laws of large numbers which are not related to any concrete class of stochastic processes. The text cites applications of the theorems, as in numbers theory, statistics, and information theory. The text is suitable for mathematicians, economists, scientists, statisticians, or researchers involved with the probability and relative frequency of large numbers.

Introduction to Probability

Introduction to Probability PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 188652923X
Category : Mathematics
Languages : en
Pages : 544

Get Book Here

Book Description
An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.

Probability

Probability PDF Author: Rick Durrett
Publisher: Cambridge University Press
ISBN: 113949113X
Category : Mathematics
Languages : en
Pages :

Get Book Here

Book Description
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.

On the Weak Law of Large Numbers

On the Weak Law of Large Numbers PDF Author: Cyrus Derman
Publisher:
ISBN:
Category : Law of large numbers
Languages : en
Pages : 6

Get Book Here

Book Description


High-Dimensional Probability

High-Dimensional Probability PDF Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299

Get Book Here

Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Sums of Independent Random Variables

Sums of Independent Random Variables PDF Author: V.V. Petrov
Publisher: Springer Science & Business Media
ISBN: 3642658091
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
The classic "Limit Dislribntions fOT slt1ns of Independent Ramdorn Vari ables" by B.V. Gnedenko and A.N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has devel oped rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I.A. Ibragi mov and Yu. V. I~innik, "Independent and Stationarily Connected VaTiables", which appeared in 1965, contains an exposition of the contem porary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distri buted random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and KolmogoTOv deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity

A Weak Convergence Approach to the Theory of Large Deviations

A Weak Convergence Approach to the Theory of Large Deviations PDF Author: Paul Dupuis
Publisher: John Wiley & Sons
ISBN: 1118165896
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness anddifficulty. This innovative text demonstrates how to employ thewell-established linear techniques of weak convergence theory toprove large deviation results. Beginning with a step-by-stepdevelopment of the approach, the book skillfully guides readersthrough models of increasing complexity covering a wide variety ofrandom variable-level and process-level problems. Representationformulas for large deviation-type expectations are a key tool andare developed systematically for discrete-time problems. Accessible to anyone who has a knowledge of measure theory andmeasure-theoretic probability, A Weak Convergence Approach to theTheory of Large Deviations is important reading for both studentsand researchers.

The Art of Conjecturing, Together with Letter to a Friend on Sets in Court Tennis

The Art of Conjecturing, Together with Letter to a Friend on Sets in Court Tennis PDF Author: Jacob Bernoulli
Publisher: JHU Press
ISBN: 9780801882357
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
"Part I reprints and reworks Huygens's On Reckoning in Games of Chance. Part II offers a thorough treatment of the mathematics of combinations and permutations, including the numbers since known as "Bernoulli numbers." In Part III, Bernoulli solves more complicated problems of games of chance using that mathematics. In the final part, Bernoulli's crowning achievement in mathematical probability becomes manifest he applies the mathematics of games of chance to the problems of epistemic probability in civil, moral, and economic matters, proving what we now know as the weak law of large numbers."

Martingale Limit Theory and Its Application

Martingale Limit Theory and Its Application PDF Author: P. Hall
Publisher: Academic Press
ISBN: 1483263223
Category : Mathematics
Languages : en
Pages : 321

Get Book Here

Book Description
Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.

Probability Theory

Probability Theory PDF Author: Yakov G. Sinai
Publisher: Springer Science & Business Media
ISBN: 366202845X
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
Sinai's book leads the student through the standard material for ProbabilityTheory, with stops along the way for interesting topics such as statistical mechanics, not usually included in a book for beginners. The first part of the book covers discrete random variables, using the same approach, basedon Kolmogorov's axioms for probability, used later for the general case. The text is divided into sixteen lectures, each covering a major topic. The introductory notions and classical results are included, of course: random variables, the central limit theorem, the law of large numbers, conditional probability, random walks, etc. Sinai's style is accessible and clear, with interesting examples to accompany new ideas. Besides statistical mechanics, other interesting, less common topics found in the book are: percolation, the concept of stability in the central limit theorem and the study of probability of large deviations. Little more than a standard undergraduate course in analysis is assumed of the reader. Notions from measure theory and Lebesgue integration are introduced in the second half of the text. The book is suitable for second or third year students in mathematics, physics or other natural sciences. It could also be usedby more advanced readers who want to learn the mathematics of probability theory and some of its applications in statistical physics.