On Explicit Algebraic Stress Models for Complex Turbulent Flows

On Explicit Algebraic Stress Models for Complex Turbulent Flows PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722451066
Category :
Languages : en
Pages : 38

Get Book Here

Book Description
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations. Gatski, T. B. and Speziale, C. G. Langley Research Center NAS1-18605; NAS1-19480; RTOP 505-90-52-01...

On Explicit Algebraic Stress Models for Complex Turbulent Flows

On Explicit Algebraic Stress Models for Complex Turbulent Flows PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722451066
Category :
Languages : en
Pages : 38

Get Book Here

Book Description
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations. Gatski, T. B. and Speziale, C. G. Langley Research Center NAS1-18605; NAS1-19480; RTOP 505-90-52-01...

On Explicit Algebraic Stress Models for Complex Turbulent Flows

On Explicit Algebraic Stress Models for Complex Turbulent Flows PDF Author: T. B. Gatski
Publisher:
ISBN:
Category : Strains and stresses
Languages : en
Pages : 40

Get Book Here

Book Description


Fully-Explicit and Self-Consistent Algebraic Reynolds Stress Models

Fully-Explicit and Self-Consistent Algebraic Reynolds Stress Models PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722250218
Category :
Languages : en
Pages : 32

Get Book Here

Book Description
A fully-explicit, self-consistent algebraic expression for the Reynolds stress, which is the exact solution to the Reynolds stress transport equation in the 'weak equilibrium' limit for two-dimensional mean flows for all linear and some quasi-linear pressure-strain models, is derived. Current explicit algebraic Reynolds stress models derived by employing the 'weak equilibrium' assumption treat the production-to-dissipation (P/epsilon) ratio implicitly, resulting in an effective viscosity that can be singular away from the equilibrium limit. In the present paper, the set of simultaneous algebraic Reynolds stress equations are solved in the full non-linear form and the eddy viscosity is found to be non-singular. Preliminary tests indicate that the model performs adequately, even for three dimensional mean flow cases. Due to the explicit and non-singular nature of the effective viscosity, this model should mitigate many of the difficulties encountered in computing complex turbulent flows with the algebraic Reynolds stress models. Girimaji, Sharath S. Langley Research Center NAS1-19480; RTOP 505-90-52-01...

Modeling Complex Turbulent Flows

Modeling Complex Turbulent Flows PDF Author: Manuel D. Salas
Publisher: Springer Science & Business Media
ISBN: 9401147248
Category : Science
Languages : en
Pages : 385

Get Book Here

Book Description
Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.

Engineering Turbulence Modelling for CFD with Focus on Explicit Algebraic Reynolds Stress Models

Engineering Turbulence Modelling for CFD with Focus on Explicit Algebraic Reynolds Stress Models PDF Author: Stefan Wallin
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 260

Get Book Here

Book Description


Progress in Propulsion Physics

Progress in Propulsion Physics PDF Author: Luigi T. DeLuca
Publisher:
ISBN: 9782759806744
Category :
Languages : en
Pages : 570

Get Book Here

Book Description
La péface indique : "EUCASS (European Conference for Aero-Space Sciences) is a scientific association at the service of research scientists, engineers, and decision makers active in aeronautical and space sciences. EUCASS, which is an international nonprofit association under the Belgian law, addresses all topics of interest to aerospace, from research challenges to long-term programmes and prospective. It organizes regular conferences, workshops, and meetings. Its goal is to attract the best specialists from Europe and elsewhere, and to create a commonwealth of interest and challenges where in-formation and ideas circulate freely and swiftly, where the currently scattered European knowledge is exchanged much faster and cross-fertilised. EUCASS is the cradle that nurtures a friendly and lively community spirit among all players. It started its activities in 2005 by organizing the first-ever European conference in Moscow, followed at a biennial rate in Brussels and Versailles. In order to contribute to the dissemination of scientific knowledge, we have launched this EUCASS Book Series, the first and second volumes of which were dedicated to Propulsion Physics and presented a selection of the lectures given in Brussels in July 2007. EUCASS is organized in several permanent Technical Committees (TC). One of them is the Flight Physics TC. Within the broad EUCASS framework, the specificc purpose of the Flight Physics TC is to promote the technology, sciences, and arts of Flight physics and to help those engaged in these pursuits to develop their skills and those of their students. This third volume of the EUCASS Book Series on Advances in Aerospace Sciences is dedicated to Flight Physics. It comprises a selected collection of 43 papers presented at the 3rd European Conference for Aerospace Sciences held in Versailles, France, July 06-10, 2009. The current volume is the result of a long review process. About 1/3 of the total number of papers accepted for presentation at the conference was later selected by the volume editors, then edited by an international body of peer reviewers. The volume includes six chapters covering experimental, theoretical and numerical aspects of the fight physics: Chapter One Aerodynamics, Chapter Two Shock Interaction, Chapter Three High Enthalphy Flows, Chapter Four Heat Transfer, Chapter Five Aeroacoustics, Chapter Six Flow Control. To easily identify the material of interest, the reader is invited to consult the brief paper summaries compiled at the start of each chapter."

Workshop on Engineering Turbulence Modeling

Workshop on Engineering Turbulence Modeling PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 536

Get Book Here

Book Description


Turbulent Flows

Turbulent Flows PDF Author: Jean Piquet
Publisher: Springer Science & Business Media
ISBN: 3662035596
Category : Technology & Engineering
Languages : en
Pages : 767

Get Book Here

Book Description
obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.

Engineering Turbulence Modelling and Experiments - 4

Engineering Turbulence Modelling and Experiments - 4 PDF Author: D. Laurence
Publisher: Elsevier
ISBN: 0080530982
Category : Science
Languages : en
Pages : 975

Get Book Here

Book Description
These proceedings contain the papers presented at the 4th International Symposium on Engineering Turbulence Modelling and Measurements held at Ajaccio, Corsica, France from 24-26 May 1999. It follows three previous conferences on the topic of engineering turbulence modelling and measurements. The purpose of this series of symposia is to provide a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. Turbulence is still one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends more and more on the performance of the turbulence models. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation.

The calculation of turbulent flows in complex geometries using an algebraic stress model

The calculation of turbulent flows in complex geometries using an algebraic stress model PDF Author: D.S. Clarke
Publisher:
ISBN: 9780705814980
Category : Flow meters
Languages : en
Pages : 8

Get Book Here

Book Description