Strong Nonlinear Oscillators

Strong Nonlinear Oscillators PDF Author: Livija Cveticanin
Publisher: Springer
ISBN: 3319588265
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book Here

Book Description
This textbook presents the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. It presents the author’s original method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameters is considered. In this second edition of the book, the number of approximate solving procedures for strong nonlinear oscillators is enlarged and a variety of procedures for solving free strong nonlinear oscillators is suggested. A method for error estimation is also given which is suitable to compare the exact and approximate solutions. Besides the oscillators with one degree-of-freedom, the one and two mass oscillatory systems with two-degrees-of-freedom and continuous oscillators are considered. The chaos and chaos suppression in ideal and non-ideal mechanical systems is explained. In this second edition more attention is given to the application of the suggested methodologies and obtained results to some practical problems in physics, mechanics, electronics and biomechanics. Thus, for the oscillator with two degrees-of-freedom, a generalization of the solving procedure is performed. Based on the obtained results, vibrations of the vocal cord are analyzed. In the book the vibration of the axially purely nonlinear rod as a continuous system is investigated. The developed solving procedure and the solutions are applied to discuss the muscle vibration. Vibrations of an optomechanical system are analyzed using the oscillations of an oscillator with odd or even quadratic nonlinearities. The extension of the forced vibrations of the system is realized by introducing the Ateb periodic excitation force which is the series of a trigonometric function. The book is self-consistent and suitable for researchers and as a textbook for students and also professionals and engineers who apply these techniques to the field of nonlinear oscillations.

Strong Nonlinear Oscillators

Strong Nonlinear Oscillators PDF Author: Livija Cveticanin
Publisher: Springer
ISBN: 3319588265
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book Here

Book Description
This textbook presents the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. It presents the author’s original method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameters is considered. In this second edition of the book, the number of approximate solving procedures for strong nonlinear oscillators is enlarged and a variety of procedures for solving free strong nonlinear oscillators is suggested. A method for error estimation is also given which is suitable to compare the exact and approximate solutions. Besides the oscillators with one degree-of-freedom, the one and two mass oscillatory systems with two-degrees-of-freedom and continuous oscillators are considered. The chaos and chaos suppression in ideal and non-ideal mechanical systems is explained. In this second edition more attention is given to the application of the suggested methodologies and obtained results to some practical problems in physics, mechanics, electronics and biomechanics. Thus, for the oscillator with two degrees-of-freedom, a generalization of the solving procedure is performed. Based on the obtained results, vibrations of the vocal cord are analyzed. In the book the vibration of the axially purely nonlinear rod as a continuous system is investigated. The developed solving procedure and the solutions are applied to discuss the muscle vibration. Vibrations of an optomechanical system are analyzed using the oscillations of an oscillator with odd or even quadratic nonlinearities. The extension of the forced vibrations of the system is realized by introducing the Ateb periodic excitation force which is the series of a trigonometric function. The book is self-consistent and suitable for researchers and as a textbook for students and also professionals and engineers who apply these techniques to the field of nonlinear oscillations.

Equadiff 2003 - Proceedings Of The International Conference On Differential Equations

Equadiff 2003 - Proceedings Of The International Conference On Differential Equations PDF Author: Freddy Dumortier
Publisher: World Scientific
ISBN: 9814480916
Category : Mathematics
Languages : en
Pages : 1180

Get Book Here

Book Description
This comprehensive volume contains the state of the art on ODE's and PDE's of different nature, functional differential equations, delay equations, and others, mostly from the dynamical systems point of view.A broad range of topics are treated through contributions by leading experts of their fields, presenting the most recent developments. A large variety of techniques are being used, stressing geometric, topological, ergodic and numerical aspects.The scope of the book is wide, ranging from pure mathematics to various applied fields. Examples of the latter are provided by subjects from earth and life sciences, classical mechanics and quantum-mechanics, among others.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1884

Get Book Here

Book Description


IUTAM Symposium on Nonlinear Stochastic Dynamics

IUTAM Symposium on Nonlinear Stochastic Dynamics PDF Author: N. Sri Namachchivaya
Publisher: Springer Science & Business Media
ISBN: 9401001790
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
Non-linear stochastic systems are at the center of many engineering disciplines and progress in theoretical research had led to a better understanding of non-linear phenomena. This book provides information on new fundamental results and their applications which are beginning to appear across the entire spectrum of mechanics. The outstanding points of these proceedings are Coherent compendium of the current state of modelling and analysis of non-linear stochastic systems from engineering, applied mathematics and physics point of view. Subject areas include: Multiscale phenomena, stability and bifurcations, control and estimation, computational methods and modelling. For the Engineering and Physics communities, this book will provide first-hand information on recent mathematical developments. The applied mathematics community will benefit from the modelling and information on various possible applications.

The Duffing Equation

The Duffing Equation PDF Author: Ivana Kovacic
Publisher: John Wiley & Sons
ISBN: 0470977833
Category : Science
Languages : en
Pages : 335

Get Book Here

Book Description
The Duffing Equation: Nonlinear Oscillators and their Behaviour brings together the results of a wealth of disseminated research literature on the Duffing equation, a key engineering model with a vast number of applications in science and engineering, summarizing the findings of this research. Each chapter is written by an expert contributor in the field of nonlinear dynamics and addresses a different form of the equation, relating it to various oscillatory problems and clearly linking the problem with the mathematics that describe it. The editors and the contributors explain the mathematical techniques required to study nonlinear dynamics, helping the reader with little mathematical background to understand the text. The Duffing Equation provides a reference text for postgraduate and students and researchers of mechanical engineering and vibration / nonlinear dynamics as well as a useful tool for practising mechanical engineers. Includes a chapter devoted to historical background on Georg Duffing and the equation that was named after him. Includes a chapter solely devoted to practical examples of systems whose dynamic behaviour is described by the Duffing equation. Contains a comprehensive treatment of the various forms of the Duffing equation. Uses experimental, analytical and numerical methods as well as concepts of nonlinear dynamics to treat the physical systems in a unified way.

The Shock and Vibration Digest

The Shock and Vibration Digest PDF Author:
Publisher:
ISBN:
Category : Shock (Mechanics)
Languages : en
Pages : 664

Get Book Here

Book Description


Dynamics of Machines with Variable Mass

Dynamics of Machines with Variable Mass PDF Author: L Cveticanin
Publisher: CRC Press
ISBN: 9789056990961
Category : Science
Languages : en
Pages : 256

Get Book Here

Book Description
Designed to be a complete and integrated text on the dynamic properties of machines, mechanisms, and rotors with variable mass, this book presents new results from investigations based on the general dynamics of systems with variable parameters. The book considers both weak and strong nonlinear vibrations of these systems, and chaotic phenomena are also discussed. The conservation laws and adiabatic invariants for systems with variable mass are formulated and the stability and instability conditions of motion are defined.

Applied Mechanics Reviews

Applied Mechanics Reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 276

Get Book Here

Book Description


Analytical Methods for Nonlinear Oscillators and Solitary Waves

Analytical Methods for Nonlinear Oscillators and Solitary Waves PDF Author: Chu-Hui He
Publisher: Frontiers Media SA
ISBN: 2832539637
Category : Science
Languages : en
Pages : 132

Get Book Here

Book Description
The most well-known analytical method is the perturbation method, which has led to the great discovery of Neptune in 1846, and since then mathematical prediction and empirical observation became two sides of a coin in physics. However, the perturbation method is based on the small parameter assumption, and the obtained solutions are valid only for weakly nonlinear equations, which have greatly limited their applications to modern physical problems. To overcome the shortcomings, many mathematicians and physicists have been extensively developing various technologies for several centuries, however, there is no universal method for all nonlinear problems, and mathematical prediction with remarkably high accuracy is still much needed for modern physics, for example, the solitary waves traveling along an unsmooth boundary, the low-frequency property of a harvesting energy device, the pull-in voltage in a micro-electromechanical system. Now various effective analytical methods have appeared in the open literature, e.g., the homotopy perturbation method and the variational iteration method. An analytical solution provides a fast insight into its physical properties of a practical problem, e.g., frequency-amplitude relation of a nonlinear oscillator, solitary wave in an optical fiber, pull-in instability of a microelectromechanical system, making mathematical prediction even more attractive in modern physics. Nonlinear physics has been developing into a new stage, where the fractal-fractional differential equations have to be adopted to describe more accurately discontinuous problems, and it becomes ever more difficult to find an analytical solution for such nonlinear problems, and the analytical methods for fractal-fractional differential equations have laid the foundations for nonlinear physics.

IUTAM Symposium on Nonlinear Stochastic Dynamics and Control

IUTAM Symposium on Nonlinear Stochastic Dynamics and Control PDF Author: W.Q. Zhu
Publisher: Springer Science & Business Media
ISBN: 9400707320
Category : Science
Languages : en
Pages : 331

Get Book Here

Book Description
Non-linear stochastic systems are at the center of many engineering disciplines and progress in theoretical research had led to a better understanding of non-linear phenomena. This book provides information on new fundamental results and their applications which are beginning to appear across the entire spectrum of mechanics. The outstanding points of these proceedings are Coherent compendium of the current state of modelling and analysis of non-linear stochastic systems from engineering, applied mathematics and physics point of view. Subject areas include: Multiscale phenomena, stability and bifurcations, control and estimation, computational methods and modelling. For the Engineering and Physics communities, this book will provide first-hand information on recent mathematical developments. The applied mathematics community will benefit from the modelling and information on various possible applications.