Numerical Treatment of Coupled Systems

Numerical Treatment of Coupled Systems PDF Author: Wolfgang Hackbusch
Publisher: Springer Science & Business Media
ISBN: 3322868591
Category : Technology & Engineering
Languages : en
Pages : 222

Get Book Here

Book Description
The coupling considered in this volume may be of physical or numerical nature. Examples of the first kind are the solid-fluid interactions, microelectronic systems, and the coupled modelling in groundwater flow. Examples of the latter kind are the domain or subspace decomposition, the local defect correction method, and the very important FEM-BEM coupling.

Numerical Treatment of Coupled Systems

Numerical Treatment of Coupled Systems PDF Author: Wolfgang Hackbusch
Publisher: Springer Science & Business Media
ISBN: 3322868591
Category : Technology & Engineering
Languages : en
Pages : 222

Get Book Here

Book Description
The coupling considered in this volume may be of physical or numerical nature. Examples of the first kind are the solid-fluid interactions, microelectronic systems, and the coupled modelling in groundwater flow. Examples of the latter kind are the domain or subspace decomposition, the local defect correction method, and the very important FEM-BEM coupling.

Modeling of Atmospheric Chemistry

Modeling of Atmospheric Chemistry PDF Author: Guy P. Brasseur
Publisher: Cambridge University Press
ISBN: 1108210953
Category : Science
Languages : en
Pages : 631

Get Book Here

Book Description
Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.

Advances in Computational Nonlinear Mechanics

Advances in Computational Nonlinear Mechanics PDF Author: I.S. Doltsinis
Publisher: Springer
ISBN: 3709128285
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
Advanced computational methods in nonlinear mechanics of solids and fluids are dealt with in this volume. Contributions consider large deformations of structures and solids, problems in nonlinear dynamics, aspects of earthquake analysis, coupled problems, convection-dominated phenomena, and compressible and incompressible viscous flows. Selected applications indicate the relevance of the analysis to the demands of industry and science. The contributors are from research institutions well-known for their work in this field.

Analysis and Simulation of Multifield Problems

Analysis and Simulation of Multifield Problems PDF Author: Wolfgang L. Wendland
Publisher: Springer Science & Business Media
ISBN: 3540365273
Category : Technology & Engineering
Languages : en
Pages : 389

Get Book Here

Book Description
The analysis and simulation of multifield problems have recently become one of the most actual and vivid areas of research. Although the individual subproblems of complex technical and physical phenomena often are understood separately, their interaction and coupling create not only new difficulties but also a complete new level and quality of interacting coupled field problems. Presented by leading experts this book includes recent results in these fields from the International Conference on Multifield Problems, April 8-10, 2002 at the University of Stuttgart, Germany.

Computation of Three-Dimensional Complex Flows

Computation of Three-Dimensional Complex Flows PDF Author: Michel Deville
Publisher: Springer Science & Business Media
ISBN: 3322898385
Category : Technology & Engineering
Languages : en
Pages : 406

Get Book Here

Book Description
Der Sammelband enthält Beiträge einer Tagung über die Simulation von dreidimensionalen Flüssigkeiten. Sie geben einen Überblick über den Stand des Wissens auf dem Gebiet der numerischen Simulation der Turbulenz, angewandt auf eine weite Spanne von Problemen wie Aerodynamik, Nicht-Newtonsche Flüssigkeiten, Konvektion.This volume contains the material presented at the IMACS-COST Conference on CFD, Three-Dimensional Complex Flows, held in Lausanne (Switzerland), September 13 - 15, 1995. It gives an overview of the current state of numerical simulation and turbulence modelling applied to a wide range of fluid flow problems such as an example aerodynamics, non-Newtonian flows, transition, thermal convection.

The Finite Element Method: Its Basis and Fundamentals

The Finite Element Method: Its Basis and Fundamentals PDF Author: O. C. Zienkiewicz
Publisher: Elsevier
ISBN: 008047277X
Category : Technology & Engineering
Languages : en
Pages : 753

Get Book Here

Book Description
The Sixth Edition of this influential best-selling book delivers the most up-to-date and comprehensive text and reference yet on the basis of the finite element method (FEM) for all engineers and mathematicians. Since the appearance of the first edition 38 years ago, The Finite Element Method provides arguably the most authoritative introductory text to the method, covering the latest developments and approaches in this dynamic subject, and is amply supplemented by exercises, worked solutions and computer algorithms.• The classic FEM text, written by the subject's leading authors • Enhancements include more worked examples and exercises• With a new chapter on automatic mesh generation and added materials on shape function development and the use of higher order elements in solving elasticity and field problemsActive research has shaped The Finite Element Method into the pre-eminent tool for the modelling of physical systems. It maintains the comprehensive style of earlier editions, while presenting the systematic development for the solution of problems modelled by linear differential equations. Together with the second and third self-contained volumes (0750663219 and 0750663227), The Finite Element Method Set (0750664312) provides a formidable resource covering the theory and the application of FEM, including the basis of the method, its application to advanced solid and structural mechanics and to computational fluid dynamics. - The classic introduction to the finite element method, by two of the subject's leading authors - Any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in this key text

J J Giambiagi Festschrift

J J Giambiagi Festschrift PDF Author: Falomir Horacio
Publisher: #N/A
ISBN: 9814569313
Category :
Languages : en
Pages : 476

Get Book Here

Book Description
This book is to commemorate the 65th birthday of J J Giambiagi one of the most important Latin American physicists. Giambiagi, in collaboration with Bollini, invented the time-honoured Dimensional Regularization method in 1971. It includes contributions from many of his friends and former students, on their present fields of interest.

Numerical Methods in Coupled Systems

Numerical Methods in Coupled Systems PDF Author: Roland W. Lewis
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 640

Get Book Here

Book Description
The only book devoted entirely to coupled systems. It presents a unified and systematic approach to the subject, covering fluid-structure interaction, coupled numerical techniques, structure-structure interaction, geotechnical and electro-magnetic couplings, and much more. This topic will become increasingly important and this volume is significant as a guide to recent developments in the analysis of coupled systems.

Scientific Computing in Chemical Engineering II

Scientific Computing in Chemical Engineering II PDF Author: Frerich Keil
Publisher: Springer Science & Business Media
ISBN: 9783540658511
Category : Computers
Languages : en
Pages : 442

Get Book Here

Book Description
The application of modern methods in numerical mathematics on problems in chemical engineering is essential for designing, analyzing and running chemical processes and even entire plants. Scientific Computing in Chemical Engineering II gives the state of the art from the point of view of numerical mathematicians as well as that of engineers. The present volume as part of a two-volume edition covers topics such as computer-aided process design, combustion and flame, image processing, optimization, control, and neural networks. The volume is aimed at scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.

Mathematical Analysis and Simulation of Field Models in Accelerator Circuits

Mathematical Analysis and Simulation of Field Models in Accelerator Circuits PDF Author: Idoia Cortes Garcia
Publisher: Springer Nature
ISBN: 3030632733
Category : Technology & Engineering
Languages : en
Pages : 171

Get Book Here

Book Description
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of “quenching”, i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.