Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666
Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Numerical Solution of Stochastic Differential Equations
Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666
Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666
Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Numerical Solution of Stochastic Differential Equations
Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 9783540540625
Category : Mathematics
Languages : en
Pages : 680
Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Publisher: Springer Science & Business Media
ISBN: 9783540540625
Category : Mathematics
Languages : en
Pages : 680
Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Numerical Solution of SDE Through Computer Experiments
Author: Peter Eris Kloeden
Publisher: Springer Science & Business Media
ISBN: 3642579132
Category : Mathematics
Languages : en
Pages : 304
Book Description
This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.
Publisher: Springer Science & Business Media
ISBN: 3642579132
Category : Mathematics
Languages : en
Pages : 304
Book Description
This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.
Numerical Solution of Stochastic Differential Equations with Jumps in Finance
Author: Eckhard Platen
Publisher: Springer Science & Business Media
ISBN: 364213694X
Category : Mathematics
Languages : en
Pages : 868
Book Description
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.
Publisher: Springer Science & Business Media
ISBN: 364213694X
Category : Mathematics
Languages : en
Pages : 868
Book Description
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.
Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Numerical Methods for Stochastic Partial Differential Equations with White Noise
Author: Zhongqiang Zhang
Publisher: Springer
ISBN: 3319575112
Category : Mathematics
Languages : en
Pages : 391
Book Description
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
Publisher: Springer
ISBN: 3319575112
Category : Mathematics
Languages : en
Pages : 391
Book Description
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations
Author: Sergej S. Artemiev
Publisher: VSP
ISBN: 9789067642507
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book deals with numerical analysis of systems of both ordinary and stochastic differential equations. The first chapter is devoted to numerical solution problems of the Cauchy problem for stiff ordinary differential equation (ODE) systems by Rosenbrock-type methods (RTMs). Here, general solutions of consistency equations are obtained, which lead to the construction of RTMs from the first to the fourth order. The second chapter deals with statistical simulation problems of the solution of the Cauchy problem for stochastic differential equation (SDE) systems. The mean-square convergence theorem is considered, as well as Taylor expansions of numerical solutions. Also included are applications of numerical methods of SDE solutions to partial differential equations and to analysis and synthesis problems of automated control of stochastic systems.
Publisher: VSP
ISBN: 9789067642507
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book deals with numerical analysis of systems of both ordinary and stochastic differential equations. The first chapter is devoted to numerical solution problems of the Cauchy problem for stiff ordinary differential equation (ODE) systems by Rosenbrock-type methods (RTMs). Here, general solutions of consistency equations are obtained, which lead to the construction of RTMs from the first to the fourth order. The second chapter deals with statistical simulation problems of the solution of the Cauchy problem for stochastic differential equation (SDE) systems. The mean-square convergence theorem is considered, as well as Taylor expansions of numerical solutions. Also included are applications of numerical methods of SDE solutions to partial differential equations and to analysis and synthesis problems of automated control of stochastic systems.
Random Ordinary Differential Equations and Their Numerical Solution
Author: Xiaoying Han
Publisher: Springer
ISBN: 981106265X
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required.
Publisher: Springer
ISBN: 981106265X
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required.
Singular Stochastic Differential Equations
Author: Alexander S. Cherny
Publisher: Springer Science & Business Media
ISBN: 9783540240075
Category : Stochastic differential equations
Languages : en
Pages : 270
Book Description
Publisher: Springer Science & Business Media
ISBN: 9783540240075
Category : Stochastic differential equations
Languages : en
Pages : 270
Book Description
An Introduction to the Numerical Simulation of Stochastic Differential Equations
Author: Desmond J. Higham
Publisher:
ISBN: 9781611976427
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781611976427
Category :
Languages : en
Pages :
Book Description