Numerical Modelling of Bulk Superconductor Magnetisation

Numerical Modelling of Bulk Superconductor Magnetisation PDF Author: Mark Ainslie
Publisher:
ISBN: 9780750313346
Category : SCIENCE
Languages : en
Pages : 0

Get Book Here

Book Description
This book provides readers with numerical analysis techniques to model the magnetisation of bulk superconductors based on the finite element method. Applications of magnetised bulk superconductors are wide ranging in engineering due to their greatly enhanced magnetic field compared to conventional magnets. Their uses include rotating electric machines, magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR) systems and magnetic separation. Numerical modelling is a particularly important and cost-effective method to guide both superconducting material processing and practical device design. It has been used successfully to interpret experimental results and the physical behaviour and properties of bulk superconductors during their various magnetisation processes, to predict and propose new magnetisation techniques and to design and predict the performance of bulk superconductor-based devices. The book provides the necessary fundamentals of bulk superconducting materials, how to model these and their various magnetisation processes and an in-depth summary of the current state-of-the-art in the field. Throughout the book, example models, implemented in the software package COMSOL Multiphysicsa, are provided so that readers may carry out modelling of their own. The current state-of-the-art in modelling bulk superconductors is summarised, including case studies that highlight the usefulness of such models.

Numerical Modelling of Bulk Superconductor Magnetisation

Numerical Modelling of Bulk Superconductor Magnetisation PDF Author: Mark Ainslie
Publisher:
ISBN: 9780750313346
Category : SCIENCE
Languages : en
Pages : 0

Get Book Here

Book Description
This book provides readers with numerical analysis techniques to model the magnetisation of bulk superconductors based on the finite element method. Applications of magnetised bulk superconductors are wide ranging in engineering due to their greatly enhanced magnetic field compared to conventional magnets. Their uses include rotating electric machines, magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR) systems and magnetic separation. Numerical modelling is a particularly important and cost-effective method to guide both superconducting material processing and practical device design. It has been used successfully to interpret experimental results and the physical behaviour and properties of bulk superconductors during their various magnetisation processes, to predict and propose new magnetisation techniques and to design and predict the performance of bulk superconductor-based devices. The book provides the necessary fundamentals of bulk superconducting materials, how to model these and their various magnetisation processes and an in-depth summary of the current state-of-the-art in the field. Throughout the book, example models, implemented in the software package COMSOL Multiphysicsa, are provided so that readers may carry out modelling of their own. The current state-of-the-art in modelling bulk superconductors is summarised, including case studies that highlight the usefulness of such models.

Numerical Modelling of Bulk Superconductor Magnetisation

Numerical Modelling of Bulk Superconductor Magnetisation PDF Author: Mark Ainslie
Publisher: Institute of Physics Publishing
ISBN: 9780750319577
Category : Computers
Languages : en
Pages : 134

Get Book Here

Book Description
This book provides readers with numerical analysis techniques to model the magnetisation of bulk superconductors based on the finite element method. How to model bulk superconducting materials and their various magnetisation processes are presented along with an in-depth summary of the current state-of-the-art in the field, and example models, implemented in the software package COMSOL Multiphysics(R), are provided so that readers may carry out modelling of their own.

Handbook of Superconductivity

Handbook of Superconductivity PDF Author: David A. Cardwell
Publisher: CRC Press
ISBN: 1000342301
Category : Science
Languages : en
Pages : 881

Get Book Here

Book Description
This is the last of three volumes of the extensively revised and updated second edition of the Handbook of Superconductivity. The past twenty years have seen rapid progress in superconducting materials, which exhibit one of the most remarkable physical states of matter ever to be discovered. Superconductivity brings quantum mechanics to the scale of the everyday world. Viable applications of superconductors rely fundamentally on an understanding of these intriguing phenomena and the availability of a range of materials with bespoke properties to meet practical needs. While the first volume covers fundamentals and various classes of materials, the second addresses processing of these into various shapes and configurations needed for applications, and ends with chapters on refrigeration methods necessary to attain the superconducting state and the desired performance. This third volume starts with a wide range of methods permitting one to characterize both the materials and various end products of processing. Subsequently, diverse classes of both large scale and electronic applications are described. Volume 3 ends with a glossary relevant to all three volumes. Key Features: Covers the depth and breadth of the field Includes contributions from leading academics and industry professionals across the world Provides hands-on familiarity with the characterization methods and offers descriptions of representative examples of practical applications A comprehensive reference, the handbook is suitable for both graduate students and practitioners in experimental physics, materials science, and multiple engineering disciplines, including electronic and electrical, chemical, mechanical, metallurgy and others.

Magnetic Susceptibility of Superconductors and Other Spin Systems

Magnetic Susceptibility of Superconductors and Other Spin Systems PDF Author: T.L. Francavilla
Publisher: Springer Science & Business Media
ISBN: 1489923799
Category : Science
Languages : en
Pages : 609

Get Book Here

Book Description
The workshop entitled Magnetic Susceptibility of Superconductors and other Spin Systems (S4) was held at Coolfont Resort and Health Spa. located near Berkley Springs West Virginia on May 20-23. 1991. There were over sixty attendees. approximately half from the United States. the remainder representing over twelve different countries. The international character of the workshop may be gleaned form the attendee list, included in this volume. The intent of the workshop was to bring together those experimentalists and theoreticians whose efforts have resulted in significant recent contributions to the development and use of the ac susceptibility technique as well as to the interpretation of data obtained from these measurements. Many spirited discussions occurred during and after the presentations. These are reflected in the manuscripts contained in these proceedings. Although camera ready manuscripts were required from all participants at registration, all manuscripts were revised and reflect the lively exchanges that followed each presentation. The small size of the workshop allowed the participants a high degree of flexibility. Consequently when a controversial topic such as "the irreversibility line" emerged, a special session was organized on the spot. At the suggestion of Ron Goldfarb, participants were invited to contribute a one page summary containing their thoughts on the topic. These stand alone contributions were retyped and included as submitted, with only minor editorial changes. These proceedings are intended for those experienced scientists new to the field and graduate students just beginning their research.

Flux Pinning in Superconductors

Flux Pinning in Superconductors PDF Author: Teruo Matsushita
Publisher: Springer Science & Business Media
ISBN: 3642453120
Category : Technology & Engineering
Languages : en
Pages : 483

Get Book Here

Book Description
The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc. are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced. Other topics are: singularity in the case of transport current in a parallel magnetic field such as deviation from the Josephson relation, reversible flux motion inside pinning potentials which causes deviation from the critical state model prediction, the concept of the minimization of energy dissipation in the flux pinning phenomena which gives the basis for the critical state model, etc. Significant reduction in the AC loss in AC wires with very fine filaments originates from the reversible flux motion which is dominant in the two-dimensional pinning. The concept of minimum energy dissipation explains also the behavior of flux bundle size which determines the irreversibility line under the flux creep. The new edition has been thoroughly updated, with new sections on the progress in enhancing the critical current density in high temperature superconductors by introduction of artificial pinning centers, the effect of packing density on the critical current density and irreversibility field in MgB2 and derivation of the force-balance equation from the minimization of the free energy including the pinning energy.

Superconductor Levitation

Superconductor Levitation PDF Author: Chan-Joong Kim
Publisher: Springer
ISBN: 981136768X
Category : Technology & Engineering
Languages : en
Pages : 251

Get Book Here

Book Description
This book introduces the physical principles behind levitation with superconductors, and includes many examples of practical magnetic levitation demonstrations using superconducting phenomena. It features more than twenty examples of magnetic levitation in liquid nitrogen using high temperature superconductors and permanent magnets, all invented by the author. The book includes the demonstration of suspension phenomenon induced by magnetic flux pinning as well as magnetic levitation by the Meissner effect. It shows how superconducting magnetic levitation and suspension phenomena fire the imagination and provide scientific insight and inspiration. This book will be a useful experimental guide and teaching resource for those working on superconductivity, and a fascinating text for undergraduate and graduate students.

Introduction to the Theory of Ferromagnetism

Introduction to the Theory of Ferromagnetism PDF Author: Amikam Aharoni
Publisher: Clarendon Press
ISBN: 9780198508083
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
The present book is the second edition of Amikam Aharoni's Introduction to the Theory of Ferromagnetism, based on a popular lecture course. Like its predecessor, it serves a two-fold purpose: First, it is a textbook for first-year graduate and advanced undergraduate students in both physics and engineering. Second, it explains the basic theoretical principles on which the work is based for practising engineers and experimental physicists who work in the field of magnetism, thus also serving to a certain extent as a reference book. For both professionals and students the emphasis is on introducing the foundations of the different subfields, highlighting the direction and tendency of the most recent research. For this new edition, the author has thoroughly updated the material especially of chapters 9 ('The Nucleation Problem') and 11 ('Numerical Micromagnetics'), which now contain the state of the art required by students and professionals who work on advanced topics of ferromagnetism. From reviews on the 1/e: '... a much needed, thorough introduction and guide to the literature. It is full of wisdom and commentary. Even more, it is Amikam Aharoni at his best - telling a story... He is fun to read... The extensive references provide an advanced review of micromagnetics and supply sources for suitable exercises... there is much for the student to do with the guidance provided by Introduction to the Theory of Ferromagnetism.' A. Arrott, Physics Today, September 1997

High-Temperature Superconductors: Materials, Properties, and Applications

High-Temperature Superconductors: Materials, Properties, and Applications PDF Author: Rainer Wesche
Publisher: Springer Science & Business Media
ISBN: 1461550750
Category : Technology & Engineering
Languages : en
Pages : 448

Get Book Here

Book Description
The discovery by J. G. Bednorz and K. A. Mtllier in 1986 that the superconducting state can exist in oxides at temperatures above 30 K stimulated research in the field of superconductivity and opened up a new field of research. Within a few years a large number of cuprate superconductors with transition temperatures well above the boiling point of liquid nitrogen have been found. The possibility of using liquid nitrogen as coolant re-stimulated interest in power applications of supercon ductivity. In this book an overview of the known high-Te superconductors and their physical properties is presented. Aspects related to conductor fabrication and high-current applications are emphasised. The material should be suitable for use in graduate level courses on superconductivity. Researchers in the field may profit from the large number of tables and references describing its status at the end of 1997. An introduction to high-To superconductivity must be based on the fundamental physical principles of normal-state electrical conductivity and the well-known characteristics of conventional superconductors. In Chapter 2 this background is provided. Crystal structures, anisotropic properties and general trends of the critical temperatures of the cuprate superconductors are described in Chapters 3 and 4. The processing of superconductor powders addressed in Chapter 5 affects considerably the current-carrying capacity of high-T. wires. In Chapter 6 several fabrication techniques for superconducting wires are described. In addition, the factors limiting the transport critical currents ofhigh-Te wires are discussed.

Second-Generation High-Temperature Superconducting Coils and Their Applications for Energy Storage

Second-Generation High-Temperature Superconducting Coils and Their Applications for Energy Storage PDF Author: Weijia Yuan
Publisher: Springer Science & Business Media
ISBN: 0857297422
Category : Technology & Engineering
Languages : en
Pages : 155

Get Book Here

Book Description
Second-Generation High-Temperature Superconducting Coils and Their Applications for Energy Storage addresses the practical electric power applications of high-temperature superconductors. It validates the concept of a prototype energy storage system using newly available 2G HTS conductors by investigating the process of building a complete system from the initial design to the final experiment. It begins with a clear introduction of the related background and then presents a comprehensive design of a superconducting energy storage system that can store maximum energy using a limited length of superconductors. The author has created a modeling environment for analysis of the system and also presents experimental results that are highly consistent with his theoretical calculations.

Magnetic Measurement Techniques for Materials Characterization

Magnetic Measurement Techniques for Materials Characterization PDF Author: Victorino Franco
Publisher: Springer Nature
ISBN: 3030704432
Category : Technology & Engineering
Languages : en
Pages : 814

Get Book Here

Book Description
This book discusses the most commonly used techniques for characterizing magnetic material properties and their applications. It provides a comprehensive and easily digestible collection and review of magnetic measurement techniques. It also examines the underlying operating principles and techniques of magnetic measurements, and presents current examples where such measurements and properties are relevant. Given the pervasive nature of magnetic materials in everyday life, this book is a vital resource for both professionals and students wishing to deepen their understanding of the subject.