Numerical Methods for Non-Newtonian Fluids

Numerical Methods for Non-Newtonian Fluids PDF Author: Philippe G. Ciarlet
Publisher: Elsevier
ISBN: 0444530479
Category : Mathematics
Languages : en
Pages : 827

Get Book Here

Book Description
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.

Numerical Methods for Non-Newtonian Fluids

Numerical Methods for Non-Newtonian Fluids PDF Author: Philippe G. Ciarlet
Publisher: Elsevier
ISBN: 0444530479
Category : Mathematics
Languages : en
Pages : 827

Get Book Here

Book Description
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.

Numerical Simulation of Non-Newtonian Flow

Numerical Simulation of Non-Newtonian Flow PDF Author: M.J. Crochet
Publisher: Elsevier Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
Numerical Simulation of Non-Newtonian Flow focuses on the numerical simulation of non-Newtonian flow using finite difference and finite element techniques. Topics range from the basic equations governing non-Newtonian fluid mechanics to flow classification and finite element calculation of flow (generalized Newtonian flow and viscoelastic flow). An overview of finite difference and finite element methods is also presented. Comprised of 11 chapters, this volume begins with an introduction to non-Newtonian mechanics, paying particular attention to the rheometrical properties of non-Newtonian fluids as well as non-Newtonian flow in complex geometries. The role of non-Newtonian fluid mechanics is also considered. The discussion then turns to the basic equations governing non-Newtonian fluid mechanics, including Navier Stokes equations and rheological equations of state. The next chapter describes a flow classification in which the various flow problems are grouped under five main headings: flows dominated by shear viscosity, slow flows (slightly elastic liquids), small deformation flows, nearly-viscometric flows, and long-range memory effects in complex flows. The remainder of the book is devoted to numerical analysis of non-Newtonian fluids using finite difference and finite element techniques. This monograph will be of interest to students and practitioners of physics and mathematics.

Handbook of Numerical Analysis

Handbook of Numerical Analysis PDF Author: R. Glowinski
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Rheology and Non-Newtonian Fluids

Rheology and Non-Newtonian Fluids PDF Author: Fridtjov Irgens
Publisher: Springer Science & Business Media
ISBN: 3319010530
Category : Technology & Engineering
Languages : en
Pages : 192

Get Book Here

Book Description
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors

Hydrodynamic Lubrication of Non-Newtonian Fluids

Hydrodynamic Lubrication of Non-Newtonian Fluids PDF Author: Ping Huang
Publisher: Elsevier
ISBN: 0323958443
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
Hydrodynamic Lubrication of Non-Newtonian Fluids covers basic theory, lubrication failure and numerical methods and procedures. The title offers a feasible method for solving the hydrodynamic lubrication problem for non-Newtonian fluids. Whereas hydrodynamic lubrication in Newtonian fluids can be solved using the existing Reynolds equation, hydrodynamic lubrication in non-Newtonian fluid is much more difficult to solve because the non-Newtonian constitutive equation is nonlinear. Engineers and technicians working on non-Newtonian fluid lubrication calculation and analysis will find this to be an invaluable reference on the latest thinking on hydrodynamic lubrication. This book presents a unified solution to hydrodynamic lubrication in non-Newtonian fluids, proposing a flow separation method. In addition, the title gives methods and insights into viscosity in non-Newtonian fluids, the lubrication failure mechanism and fluid lubrication mechanism carrying capacity. - Offers a solution to hydrodynamic lubrication in non-Newtonian fluids - Covers a new separation method and sets up an integral differential equation towards a unified method - Provides insights into the viscosity of non-Newtonian fluids, putting forward incremental and full viscosity as important concepts - Analyzes the lubrication failure mechanism and fluid lubrication mechanism carrying capacity - Presents researchers with a way of calculating and analyzing fluid dynamic pressure lubrication, flap lubrication and hot-bounce lubrication of common non-Newtonian fluids

Non-Newtonian Flow

Non-Newtonian Flow PDF Author: R. P. Chhabra
Publisher: Elsevier
ISBN: 0080512836
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
Non-Newtonian materials are encountered in virtually all of the chemical and process industries and a full understanding of their nature and flow characteristics is an essential requirement for engineers and scientists involved in their formulation and handling. This book will bridge the gap between much of the highly theoretical and mathematically complex work of the rheologist and the practical needs of those who have to design and operate plants in which these materials are handled and processed. At the same time, numerous references are included for the benefit of those who need to delve more deeply into the subject.The starting point for any work on non-newtonian fluids is their characterisation over the range of conditions to which they are likely to be subjected during manufacture or utilisation, and this topic is treated early on in the book in a chapter commissioned from an expert in the field of rheological measurements. Coverage of topics is extensive and this book offers a unique and rich selection of material including the flow of single phase and multiphase mixtures in pipes, in packed and fluidised bed systems, heat and mass transfer in boundary layers and in simple duct flows, and mixing etc.An important and novel feature of the book is the inclusion of a wide selection of worked examples to illustrate the methods of calculation. It also incorporates a large selection of problems for the reader to tackle himself.

The Finite Element Method in Heat Transfer and Fluid Dynamics, Second Edition

The Finite Element Method in Heat Transfer and Fluid Dynamics, Second Edition PDF Author: J. N. Reddy
Publisher: CRC Press
ISBN: 9780849323553
Category : Science
Languages : en
Pages : 496

Get Book Here

Book Description
The numerical simulation of fluid mechanics and heat transfer problems is now a standard part of engineering practice. The widespread availability of capable computing hardware has led to an increased demand for computer simulations of products and processes during their engineering design and manufacturing phases. The range of fluid mechanics and heat transfer applications of finite element analysis has become quite remarkable, with complex, realistic simulations being carried out on a routine basis. The award-winning first edition of The Finite Element Method in Heat Transfer and Fluid Dynamics brought this powerful methodology to those interested in applying it to the significant class of problems dealing with heat conduction, incompressible viscous flows, and convection heat transfer. The Second Edition of this bestselling text continues to provide the academic community and industry with up-to-date, authoritative information on the use of the finite element method in the study of fluid mechanics and heat transfer. Extensively revised and thoroughly updated, new and expanded material includes discussions on difficult boundary conditions, contact and bulk nodes, change of phase, weighted-integral statements and weak forms, chemically reactive systems, stabilized methods, free surface problems, and much more. The Finite Element Method in Heat Transfer and Fluid Dynamics offers students a pragmatic treatment that views numerical computation as a means to an end and does not dwell on theory or proof. Mastering its contents brings a firm understanding of the basic methodology, competence in using existing simulation software, and the ability to develop some simpler, special purpose computer codes.

Heat Transfer to Non-Newtonian Fluids

Heat Transfer to Non-Newtonian Fluids PDF Author: Aroon Shenoy
Publisher: John Wiley & Sons
ISBN: 3527343628
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
This book has been written with the idea of providing the fundamentals for those who are interested in the field of heat transfer to non-Newtonian fluids. It is well recognized that non-Newtonian fluids are encountered in a number of transport processes and estimation of the heat transfer characteristics in the presence of these fluids requires analysis of equations that are far more complex than those encountered for Newtonian fluids. A deliberate effort has been made to demonstrate the methods of simplification of the complex equations and to put forth analytical expressions for the various heat transfer situations in as vivid a manner as possible. The book covers a broad range of topics from forced, natural and mixed convection without and with porous media. Laminar as well as turbulent flow heat transfer to non-Newtonian fluids have been treated and the criterion for transition from laminar to turbulent flow for natural convection has been established. The heat transfer characteristics of non-Newtonian fluids from inelastic power-law fluids to viscoelastic second-order fluids and mildly elastic drag reducing fluids are covered. This book can serve the needs of undergraduates, graduates and industry personnel from the fields of chemical engineering, material science and engineering, mechanical engineering and polymer engineering.

An Introduction to Nonlinear Finite Element Analysis Second Edition

An Introduction to Nonlinear Finite Element Analysis Second Edition PDF Author: J. N. Reddy
Publisher: OUP Oxford
ISBN: 0191034851
Category : Technology & Engineering
Languages : en
Pages : 721

Get Book Here

Book Description
The second edition of An Introduction to Nonlinear Finite Element Analysis has the same objective as the first edition, namely, to facilitate an easy and thorough understanding of the details that are involved in the theoretical formulation, finite element model development, and solutions of nonlinear problems. The book offers an easy-to-understand treatment of the subject of nonlinear finite element analysis, which includes element development from mathematical models and numerical evaluation of the underlying physics. The new edition is extensively reorganized and contains substantial amounts of new material. Chapter 1 in the second edition contains a section on applied functional analysis. Chapter 2 on nonlinear continuum mechanics is entirely new. Chapters 3 through 8 in the new edition correspond to Chapter 2 through 8 of the first edition, but with additional explanations, examples, and exercise problems. Material on time dependent problems from Chapter 8 of the first edition is absorbed into Chapters 4 through 8 of the new edition. Chapter 9 is extensively revised and it contains up to date developments in the large deformation analysis of isotropic, composite and functionally graded shells. Chapter 10 of the first edition on material nonlinearity and coupled problems is reorganized in the second edition by moving the material on solid mechanics to Chapter 12 in the new edition and material on coupled problems to the new chapter, Chapter 10, on weak-form Galerkin finite element models of viscous incompressible fluids. Finally, Chapter 11 in the second edition is entirely new and devoted to least-squares finite element models of viscous incompressible fluids. Chapter 12 of the second edition is enlarged to contain finite element models of viscoelastic beams. In general, all of the chapters of the second edition contain additional explanations, detailed example problems, and additional exercise problems. Although all of the segments are in Fortran, the logic used in these Fortran programs is transparent and can be used in Matlab or C++ versions of the same. Thus the new edition more than replaces the first edition, and it is hoped that it is acquired by the library of every institution of higher learning as well as serious finite element analysts. The book may be used as a textbook for an advanced course (after a first course) on the finite element method or the first course on nonlinear finite element analysis. A solutions manual is available on request from the publisher to instructors who adopt the book as a textbook for a course.

The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition

The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition PDF Author: J. N. Reddy
Publisher: CRC Press
ISBN: 1420085980
Category : Science
Languages : en
Pages : 515

Get Book Here

Book Description
As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.