Author: Philip E. Gill
Publisher: SIAM
ISBN: 161197657X
Category : Mathematics
Languages : en
Pages : 449
Book Description
This classic volume covers the fundamentals of two closely related topics: linear systems (linear equations and least-squares) and linear programming (optimizing a linear function subject to linear constraints). For each problem class, stable and efficient numerical algorithms intended for a finite-precision environment are derived and analyzed. While linear algebra and optimization have made huge advances since this book first appeared in 1991, the fundamental principles have not changed. These topics were rarely taught with a unified perspective, and, somewhat surprisingly, this remains true 30 years later. As a result, some of the material in this book can be difficult to find elsewhere—in particular, techniques for updating the LU factorization, descriptions of the simplex method applied to all-inequality form, and the analysis of what happens when using an approximate inverse to solve Ax=b. Numerical Linear Algebra and Optimization is primarily a reference for students who want to learn about numerical techniques for solving linear systems and/or linear programming using the simplex method; however, Chapters 6, 7, and 8 can be used as the text for an upper-division course on linear least squares and linear programming. Understanding is enhanced by numerous exercises.
Numerical Linear Algebra and Optimization
Author: Philip E. Gill
Publisher: SIAM
ISBN: 161197657X
Category : Mathematics
Languages : en
Pages : 449
Book Description
This classic volume covers the fundamentals of two closely related topics: linear systems (linear equations and least-squares) and linear programming (optimizing a linear function subject to linear constraints). For each problem class, stable and efficient numerical algorithms intended for a finite-precision environment are derived and analyzed. While linear algebra and optimization have made huge advances since this book first appeared in 1991, the fundamental principles have not changed. These topics were rarely taught with a unified perspective, and, somewhat surprisingly, this remains true 30 years later. As a result, some of the material in this book can be difficult to find elsewhere—in particular, techniques for updating the LU factorization, descriptions of the simplex method applied to all-inequality form, and the analysis of what happens when using an approximate inverse to solve Ax=b. Numerical Linear Algebra and Optimization is primarily a reference for students who want to learn about numerical techniques for solving linear systems and/or linear programming using the simplex method; however, Chapters 6, 7, and 8 can be used as the text for an upper-division course on linear least squares and linear programming. Understanding is enhanced by numerous exercises.
Publisher: SIAM
ISBN: 161197657X
Category : Mathematics
Languages : en
Pages : 449
Book Description
This classic volume covers the fundamentals of two closely related topics: linear systems (linear equations and least-squares) and linear programming (optimizing a linear function subject to linear constraints). For each problem class, stable and efficient numerical algorithms intended for a finite-precision environment are derived and analyzed. While linear algebra and optimization have made huge advances since this book first appeared in 1991, the fundamental principles have not changed. These topics were rarely taught with a unified perspective, and, somewhat surprisingly, this remains true 30 years later. As a result, some of the material in this book can be difficult to find elsewhere—in particular, techniques for updating the LU factorization, descriptions of the simplex method applied to all-inequality form, and the analysis of what happens when using an approximate inverse to solve Ax=b. Numerical Linear Algebra and Optimization is primarily a reference for students who want to learn about numerical techniques for solving linear systems and/or linear programming using the simplex method; however, Chapters 6, 7, and 8 can be used as the text for an upper-division course on linear least squares and linear programming. Understanding is enhanced by numerous exercises.
Introduction to Numerical Linear Algebra and Optimisation
Author: Philippe G. Ciarlet
Publisher: Cambridge University Press
ISBN: 9780521339841
Category : Computers
Languages : en
Pages : 456
Book Description
The purpose of this book is to give a thorough introduction to the most commonly used methods of numerical linear algebra and optimisation. The prerequisites are some familiarity with the basic properties of matrices, finite-dimensional vector spaces, advanced calculus, and some elementary notations from functional analysis. The book is in two parts. The first deals with numerical linear algebra (review of matrix theory, direct and iterative methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimisation (general algorithms, linear and nonlinear programming). The author has based the book on courses taught for advanced undergraduate and beginning graduate students and the result is a well-organised and lucid exposition. Summaries of basic mathematics are provided, proofs of theorems are complete yet kept as simple as possible, and applications from physics and mechanics are discussed. Professor Ciarlet has also helpfully provided over 40 line diagrams, a great many applications, and a useful guide to further reading. This excellent textbook, which is translated and revised from the very successful French edition, will be of great value to students of numerical analysis, applied mathematics and engineering.
Publisher: Cambridge University Press
ISBN: 9780521339841
Category : Computers
Languages : en
Pages : 456
Book Description
The purpose of this book is to give a thorough introduction to the most commonly used methods of numerical linear algebra and optimisation. The prerequisites are some familiarity with the basic properties of matrices, finite-dimensional vector spaces, advanced calculus, and some elementary notations from functional analysis. The book is in two parts. The first deals with numerical linear algebra (review of matrix theory, direct and iterative methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimisation (general algorithms, linear and nonlinear programming). The author has based the book on courses taught for advanced undergraduate and beginning graduate students and the result is a well-organised and lucid exposition. Summaries of basic mathematics are provided, proofs of theorems are complete yet kept as simple as possible, and applications from physics and mechanics are discussed. Professor Ciarlet has also helpfully provided over 40 line diagrams, a great many applications, and a useful guide to further reading. This excellent textbook, which is translated and revised from the very successful French edition, will be of great value to students of numerical analysis, applied mathematics and engineering.
Numerical Linear Algebra
Author: Holger Wendland
Publisher: Cambridge University Press
ISBN: 1107147131
Category : Computers
Languages : en
Pages : 419
Book Description
This self-contained introduction to numerical linear algebra provides a comprehensive, yet concise, overview of the subject. It includes standard material such as direct methods for solving linear systems and least-squares problems, error, stability and conditioning, basic iterative methods and the calculation of eigenvalues. Later chapters cover more advanced material, such as Krylov subspace methods, multigrid methods, domain decomposition methods, multipole expansions, hierarchical matrices and compressed sensing. The book provides rigorous mathematical proofs throughout, and gives algorithms in general-purpose language-independent form. Requiring only a solid knowledge in linear algebra and basic analysis, this book will be useful for applied mathematicians, engineers, computer scientists, and all those interested in efficiently solving linear problems.
Publisher: Cambridge University Press
ISBN: 1107147131
Category : Computers
Languages : en
Pages : 419
Book Description
This self-contained introduction to numerical linear algebra provides a comprehensive, yet concise, overview of the subject. It includes standard material such as direct methods for solving linear systems and least-squares problems, error, stability and conditioning, basic iterative methods and the calculation of eigenvalues. Later chapters cover more advanced material, such as Krylov subspace methods, multigrid methods, domain decomposition methods, multipole expansions, hierarchical matrices and compressed sensing. The book provides rigorous mathematical proofs throughout, and gives algorithms in general-purpose language-independent form. Requiring only a solid knowledge in linear algebra and basic analysis, this book will be useful for applied mathematicians, engineers, computer scientists, and all those interested in efficiently solving linear problems.
Linear Algebra and Optimization for Machine Learning
Author: Charu C. Aggarwal
Publisher: Springer Nature
ISBN: 3030403440
Category : Computers
Languages : en
Pages : 507
Book Description
This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
Publisher: Springer Nature
ISBN: 3030403440
Category : Computers
Languages : en
Pages : 507
Book Description
This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
Numerical Linear Algebra and Matrix Factorizations
Author: Tom Lyche
Publisher: Springer Nature
ISBN: 3030364682
Category : Mathematics
Languages : en
Pages : 376
Book Description
After reading this book, students should be able to analyze computational problems in linear algebra such as linear systems, least squares- and eigenvalue problems, and to develop their own algorithms for solving them. Since these problems can be large and difficult to handle, much can be gained by understanding and taking advantage of special structures. This in turn requires a good grasp of basic numerical linear algebra and matrix factorizations. Factoring a matrix into a product of simpler matrices is a crucial tool in numerical linear algebra, because it allows us to tackle complex problems by solving a sequence of easier ones. The main characteristics of this book are as follows: It is self-contained, only assuming that readers have completed first-year calculus and an introductory course on linear algebra, and that they have some experience with solving mathematical problems on a computer. The book provides detailed proofs of virtually all results. Further, its respective parts can be used independently, making it suitable for self-study. The book consists of 15 chapters, divided into five thematically oriented parts. The chapters are designed for a one-week-per-chapter, one-semester course. To facilitate self-study, an introductory chapter includes a brief review of linear algebra.
Publisher: Springer Nature
ISBN: 3030364682
Category : Mathematics
Languages : en
Pages : 376
Book Description
After reading this book, students should be able to analyze computational problems in linear algebra such as linear systems, least squares- and eigenvalue problems, and to develop their own algorithms for solving them. Since these problems can be large and difficult to handle, much can be gained by understanding and taking advantage of special structures. This in turn requires a good grasp of basic numerical linear algebra and matrix factorizations. Factoring a matrix into a product of simpler matrices is a crucial tool in numerical linear algebra, because it allows us to tackle complex problems by solving a sequence of easier ones. The main characteristics of this book are as follows: It is self-contained, only assuming that readers have completed first-year calculus and an introductory course on linear algebra, and that they have some experience with solving mathematical problems on a computer. The book provides detailed proofs of virtually all results. Further, its respective parts can be used independently, making it suitable for self-study. The book consists of 15 chapters, divided into five thematically oriented parts. The chapters are designed for a one-week-per-chapter, one-semester course. To facilitate self-study, an introductory chapter includes a brief review of linear algebra.
Applied Numerical Linear Algebra
Author: James W. Demmel
Publisher: SIAM
ISBN: 0898713897
Category : Mathematics
Languages : en
Pages : 426
Book Description
This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.
Publisher: SIAM
ISBN: 0898713897
Category : Mathematics
Languages : en
Pages : 426
Book Description
This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.
Numerical Algorithms
Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Numerical Methods and Optimization
Author: Sergiy Butenko
Publisher: CRC Press
ISBN: 1466577789
Category : Business & Economics
Languages : en
Pages : 408
Book Description
For students in industrial and systems engineering (ISE) and operations research (OR) to understand optimization at an advanced level, they must first grasp the analysis of algorithms, computational complexity, and other concepts and modern developments in numerical methods. Satisfying this prerequisite, Numerical Methods and Optimization: An Intro
Publisher: CRC Press
ISBN: 1466577789
Category : Business & Economics
Languages : en
Pages : 408
Book Description
For students in industrial and systems engineering (ISE) and operations research (OR) to understand optimization at an advanced level, they must first grasp the analysis of algorithms, computational complexity, and other concepts and modern developments in numerical methods. Satisfying this prerequisite, Numerical Methods and Optimization: An Intro
Numerical Optimization
Author: Jorge Nocedal
Publisher: Springer Science & Business Media
ISBN: 0387400656
Category : Mathematics
Languages : en
Pages : 686
Book Description
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Publisher: Springer Science & Business Media
ISBN: 0387400656
Category : Mathematics
Languages : en
Pages : 686
Book Description
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
Author: J. E. Dennis, Jr.
Publisher: SIAM
ISBN: 0898713641
Category : Mathematics
Languages : en
Pages : 390
Book Description
A complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations.
Publisher: SIAM
ISBN: 0898713641
Category : Mathematics
Languages : en
Pages : 390
Book Description
A complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations.