Numerical Computing with Python

Numerical Computing with Python PDF Author: Pratap Dangeti
Publisher: Packt Publishing Ltd
ISBN: 1789957222
Category : Computers
Languages : en
Pages : 676

Get Book Here

Book Description
Understand, explore, and effectively present data using the powerful data visualization techniques of Python Key FeaturesUse the power of Pandas and Matplotlib to easily solve data mining issuesUnderstand the basics of statistics to build powerful predictive data modelsGrasp data mining concepts with helpful use-cases and examplesBook Description Data mining, or parsing the data to extract useful insights, is a niche skill that can transform your career as a data scientist Python is a flexible programming language that is equipped with a strong suite of libraries and toolkits, and gives you the perfect platform to sift through your data and mine the insights you seek. This Learning Path is designed to familiarize you with the Python libraries and the underlying statistics that you need to get comfortable with data mining. You will learn how to use Pandas, Python's popular library to analyze different kinds of data, and leverage the power of Matplotlib to generate appealing and impressive visualizations for the insights you have derived. You will also explore different machine learning techniques and statistics that enable you to build powerful predictive models. By the end of this Learning Path, you will have the perfect foundation to take your data mining skills to the next level and set yourself on the path to become a sought-after data science professional. This Learning Path includes content from the following Packt products: Statistics for Machine Learning by Pratap DangetiMatplotlib 2.x By Example by Allen Yu, Claire Chung, Aldrin YimPandas Cookbook by Theodore PetrouWhat you will learnUnderstand the statistical fundamentals to build data modelsSplit data into independent groups Apply aggregations and transformations to each groupCreate impressive data visualizationsPrepare your data and design models Clean up data to ease data analysis and visualizationCreate insightful visualizations with Matplotlib and SeabornCustomize the model to suit your own predictive goalsWho this book is for If you want to learn how to use the many libraries of Python to extract impactful information from your data and present it as engaging visuals, then this is the ideal Learning Path for you. Some basic knowledge of Python is enough to get started with this Learning Path.

Numerical Computing with Python

Numerical Computing with Python PDF Author: Pratap Dangeti
Publisher: Packt Publishing Ltd
ISBN: 1789957222
Category : Computers
Languages : en
Pages : 676

Get Book Here

Book Description
Understand, explore, and effectively present data using the powerful data visualization techniques of Python Key FeaturesUse the power of Pandas and Matplotlib to easily solve data mining issuesUnderstand the basics of statistics to build powerful predictive data modelsGrasp data mining concepts with helpful use-cases and examplesBook Description Data mining, or parsing the data to extract useful insights, is a niche skill that can transform your career as a data scientist Python is a flexible programming language that is equipped with a strong suite of libraries and toolkits, and gives you the perfect platform to sift through your data and mine the insights you seek. This Learning Path is designed to familiarize you with the Python libraries and the underlying statistics that you need to get comfortable with data mining. You will learn how to use Pandas, Python's popular library to analyze different kinds of data, and leverage the power of Matplotlib to generate appealing and impressive visualizations for the insights you have derived. You will also explore different machine learning techniques and statistics that enable you to build powerful predictive models. By the end of this Learning Path, you will have the perfect foundation to take your data mining skills to the next level and set yourself on the path to become a sought-after data science professional. This Learning Path includes content from the following Packt products: Statistics for Machine Learning by Pratap DangetiMatplotlib 2.x By Example by Allen Yu, Claire Chung, Aldrin YimPandas Cookbook by Theodore PetrouWhat you will learnUnderstand the statistical fundamentals to build data modelsSplit data into independent groups Apply aggregations and transformations to each groupCreate impressive data visualizationsPrepare your data and design models Clean up data to ease data analysis and visualizationCreate insightful visualizations with Matplotlib and SeabornCustomize the model to suit your own predictive goalsWho this book is for If you want to learn how to use the many libraries of Python to extract impactful information from your data and present it as engaging visuals, then this is the ideal Learning Path for you. Some basic knowledge of Python is enough to get started with this Learning Path.

Python Programming and Numerical Methods

Python Programming and Numerical Methods PDF Author: Qingkai Kong
Publisher: Academic Press
ISBN: 0128195509
Category : Technology & Engineering
Languages : en
Pages : 482

Get Book Here

Book Description
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online

Python Scripting for Computational Science

Python Scripting for Computational Science PDF Author: Hans Petter Langtangen
Publisher: Springer Science & Business Media
ISBN: 3662054507
Category : Computers
Languages : en
Pages : 743

Get Book Here

Book Description
Scripting with Python makes you productive and increases the reliability of your scientific work. Here, the author teaches you how to develop tailored, flexible, and efficient working environments built from small programs (scripts) written in Python. The focus is on examples and applications of relevance to computational science: gluing existing applications and tools, e.g. for automating simulation, data analysis, and visualization; steering simulations and computational experiments; equipping programs with graphical user interfaces; making computational Web services; creating interactive interfaces with a Maple/Matlab-like syntax to numerical applications in C/C++ or Fortran; and building flexible object-oriented programming interfaces to existing C/C++ or Fortran libraries.

Numerical Python

Numerical Python PDF Author: Robert Johansson
Publisher: Apress
ISBN: 1484242467
Category : Computers
Languages : en
Pages : 709

Get Book Here

Book Description
Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. What You'll Learn Work with vectors and matrices using NumPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Review statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its related ecosystem for numerical computing.

Numerical Python

Numerical Python PDF Author: Robert Johansson
Publisher: Apress
ISBN: 1484205537
Category : Computers
Languages : en
Pages : 505

Get Book Here

Book Description
Numerical Python by Robert Johansson shows you how to leverage the numerical and mathematical modules in Python and its Standard Library as well as popular open source numerical Python packages like NumPy, FiPy, matplotlib and more to numerically compute solutions and mathematically model applications in a number of areas like big data, cloud computing, financial engineering, business management and more. After reading and using this book, you'll get some takeaway case study examples of applications that can be found in areas like business management, big data/cloud computing, financial engineering (i.e., options trading investment alternatives), and even games. Up until very recently, Python was mostly regarded as just a web scripting language. Well, computational scientists and engineers have recently discovered the flexibility and power of Python to do more. Big data analytics and cloud computing programmers are seeing Python's immense use. Financial engineers are also now employing Python in their work. Python seems to be evolving as a language that can even rival C++, Fortran, and Pascal/Delphi for numerical and mathematical computations.

Practical Numerical and Scientific Computing with MATLAB® and Python

Practical Numerical and Scientific Computing with MATLAB® and Python PDF Author: Eihab B. M. Bashier
Publisher: CRC Press
ISBN: 0429666829
Category : Computers
Languages : en
Pages : 349

Get Book Here

Book Description
Practical Numerical and Scientific Computing with MATLAB® and Python concentrates on the practical aspects of numerical analysis and linear and non-linear programming. It discusses the methods for solving different types of mathematical problems using MATLAB and Python. Although the book focuses on the approximation problem rather than on error analysis of mathematical problems, it provides practical ways to calculate errors. The book is divided into three parts, covering topics in numerical linear algebra, methods of interpolation, numerical differentiation and integration, solutions of differential equations, linear and non-linear programming problems, and optimal control problems. This book has the following advantages: It adopts the programming languages, MATLAB and Python, which are widely used among academics, scientists, and engineers, for ease of use and contain many libraries covering many scientific and engineering fields. It contains topics that are rarely found in other numerical analysis books, such as ill-conditioned linear systems and methods of regularization to stabilize their solutions, nonstandard finite differences methods for solutions of ordinary differential equations, and the computations of the optimal controls. It provides a practical explanation of how to apply these topics using MATLAB and Python. It discusses software libraries to solve mathematical problems, such as software Gekko, pulp, and pyomo. These libraries use Python for solutions to differential equations and static and dynamic optimization problems. Most programs in the book can be applied in versions prior to MATLAB 2017b and Python 3.7.4 without the need to modify these programs. This book is aimed at newcomers and middle-level students, as well as members of the scientific community who are interested in solving math problems using MATLAB or Python.

Practical Numerical Computing Using Python

Practical Numerical Computing Using Python PDF Author: Mahendra Verma
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Review: "This excellent book of Prof. Verma is a single resource which a student can use to learn the fast-developing field of computational science. In addition to the description of Python language, it provides a broad overview of hardware, software, classic numerical methods, and everything in between. I recommend it strongly to all!" -- Prof. Prateek Sharma, IISc Bengaluru Key Features of the Book: Perfect book for introduction to practical numerical algorithms and programs for advanced undergraduate and beginning graduate students. Introduces Python programming language and its modules related to numerical computing Covers Numpy, Matplotlib, and Scipy modules in details. Illustrates how to make a variety of plots and animations. Detailed discussions on important numerical algorithms: Interpolation, Integration, Differentiation, ODE and PDE solvers, and Linear algebra solvers. Practical implementation of the algorithms in Python. Introduces Spectral and Finite-difference methods and applications to fluid mechanics and quantum mechanics. Includes chapters on Monte Carlo methods and applications to statistical physics, as well as on error analysis. A brief introduction to Computer hardware, complexity estimates, and nondimensionalization.

Applied Scientific Computing

Applied Scientific Computing PDF Author: Peter R. Turner
Publisher: Springer
ISBN: 3319895753
Category : Computers
Languages : en
Pages : 280

Get Book Here

Book Description
This easy-to-understand textbook presents a modern approach to learning numerical methods (or scientific computing), with a unique focus on the modeling and applications of the mathematical content. Emphasis is placed on the need for, and methods of, scientific computing for a range of different types of problems, supplying the evidence and justification to motivate the reader. Practical guidance on coding the methods is also provided, through simple-to-follow examples using Python. Topics and features: provides an accessible and applications-oriented approach, supported by working Python code for many of the methods; encourages both problem- and project-based learning through extensive examples, exercises, and projects drawn from practical applications; introduces the main concepts in modeling, python programming, number representation, and errors; explains the essential details of numerical calculus, linear, and nonlinear equations, including the multivariable Newton method; discusses interpolation and the numerical solution of differential equations, covering polynomial interpolation, splines, and the Euler, Runge–Kutta, and shooting methods; presents largely self-contained chapters, arranged in a logical order suitable for an introductory course on scientific computing. Undergraduate students embarking on a first course on numerical methods or scientific computing will find this textbook to be an invaluable guide to the field, and to the application of these methods across such varied disciplines as computer science, engineering, mathematics, economics, the physical sciences, and social science.

Scientific Computing with Python - Second Edition

Scientific Computing with Python - Second Edition PDF Author: CLAUS. FUHRER
Publisher:
ISBN: 9781838822323
Category :
Languages : en
Pages : 392

Get Book Here

Book Description
Leverage this example-packed, comprehensive guide for all your Python computational needs Key Features: Learn the first steps within Python to highly specialized concepts Explore examples and code snippets taken from typical programming situations within scientific computing. Delve into essential computer science concepts like iterating, object-oriented programming, testing, and MPI presented in strong connection to applications within scientific computing. Book Description: Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing. What You Will Learn: Understand the building blocks of computational mathematics, linear algebra, and related Python objects Use Matplotlib to create high-quality figures and graphics to draw and visualize results Apply object-oriented programming (OOP) to scientific computing in Python Discover how to use pandas to enter the world of data processing Handle exceptions for writing reliable and usable code Cover manual and automatic aspects of testing for scientific programming Get to grips with parallel computing to increase computation speed Who this book is for: This book is for students with a mathematical background, university teachers designing modern courses in programming, data scientists, researchers, developers, and anyone who wants to perform scientific computation in Python.

A Primer on Scientific Programming with Python

A Primer on Scientific Programming with Python PDF Author: Hans Petter Langtangen
Publisher: Springer
ISBN: 3662498871
Category : Computers
Languages : en
Pages : 942

Get Book Here

Book Description
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015