Author: Ulrich Römer
Publisher: Springer
ISBN: 3319412949
Category : Technology & Engineering
Languages : en
Pages : 128
Book Description
This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.
Numerical Approximation of the Magnetoquasistatic Model with Uncertainties
Author: Ulrich Römer
Publisher: Springer
ISBN: 3319412949
Category : Technology & Engineering
Languages : en
Pages : 128
Book Description
This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.
Publisher: Springer
ISBN: 3319412949
Category : Technology & Engineering
Languages : en
Pages : 128
Book Description
This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.
Mathematical Analysis and Simulation of Field Models in Accelerator Circuits
Author: Idoia Cortes Garcia
Publisher: Springer Nature
ISBN: 3030632733
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of “quenching”, i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.
Publisher: Springer Nature
ISBN: 3030632733
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of “quenching”, i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.
Scientific Computing in Electrical Engineering
Author: Martijn van Beurden
Publisher: Springer Nature
ISBN: 3031545176
Category :
Languages : en
Pages : 239
Book Description
Publisher: Springer Nature
ISBN: 3031545176
Category :
Languages : en
Pages : 239
Book Description
Nanoelectronic Coupled Problems Solutions
Author: E. Jan W. ter Maten
Publisher: Springer Nature
ISBN: 3030307263
Category : Mathematics
Languages : en
Pages : 587
Book Description
Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1) advanced monolithic/multirate/co-simulation techniques, which are combined with envelope/wavelet approaches to create efficient and robust simulation techniques for strongly coupled systems that exploit the different dynamics of sub-systems within multiphysics problems, and which allow designers to predict reliability and ageing; (2) new generalized techniques in Uncertainty Quantification (UQ) for coupled problems to include a variability capability such that robust design and optimization, worst case analysis, and yield estimation with tiny failure probabilities are possible (including large deviations like 6-sigma); (3) enhanced sparse, parametric Model Order Reduction techniques with a posteriori error estimation for coupled problems and for UQ to reduce the complexity of the sub-systems while ensuring that the operational and coupling parameters can still be varied and that the reduced models offer higher abstraction levels that can be efficiently simulated. All the new algorithms produced were implemented, transferred and tested by the EDA vendor MAGWEL. Validation was conducted on industrial designs provided by end-users from the semiconductor industry, who shared their feedback, contributed to the measurements, and supplied both material data and process data. In closing, a thorough comparison to measurements on real devices was made in order to demonstrate the algorithms’ industrial applicability.
Publisher: Springer Nature
ISBN: 3030307263
Category : Mathematics
Languages : en
Pages : 587
Book Description
Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1) advanced monolithic/multirate/co-simulation techniques, which are combined with envelope/wavelet approaches to create efficient and robust simulation techniques for strongly coupled systems that exploit the different dynamics of sub-systems within multiphysics problems, and which allow designers to predict reliability and ageing; (2) new generalized techniques in Uncertainty Quantification (UQ) for coupled problems to include a variability capability such that robust design and optimization, worst case analysis, and yield estimation with tiny failure probabilities are possible (including large deviations like 6-sigma); (3) enhanced sparse, parametric Model Order Reduction techniques with a posteriori error estimation for coupled problems and for UQ to reduce the complexity of the sub-systems while ensuring that the operational and coupling parameters can still be varied and that the reduced models offer higher abstraction levels that can be efficiently simulated. All the new algorithms produced were implemented, transferred and tested by the EDA vendor MAGWEL. Validation was conducted on industrial designs provided by end-users from the semiconductor industry, who shared their feedback, contributed to the measurements, and supplied both material data and process data. In closing, a thorough comparison to measurements on real devices was made in order to demonstrate the algorithms’ industrial applicability.
Mathematical Analysis and Simulation of Field Models in Accelerator Circuits
Author: Idoia Cortes Garcia
Publisher:
ISBN: 9783030632748
Category :
Languages : en
Pages : 0
Book Description
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of "quenching", i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts. .
Publisher:
ISBN: 9783030632748
Category :
Languages : en
Pages : 0
Book Description
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of "quenching", i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts. .
Modelling and Control of Switched Reluctance Machines
Author: Rui Araújo
Publisher: BoD – Books on Demand
ISBN: 1789844541
Category : Science
Languages : en
Pages : 373
Book Description
Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators.
Publisher: BoD – Books on Demand
ISBN: 1789844541
Category : Science
Languages : en
Pages : 373
Book Description
Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators.
Computational Electromagnetics for RF and Microwave Engineering
Author: David B. Davidson
Publisher: Cambridge University Press
ISBN: 9780521838597
Category : Juvenile Nonfiction
Languages : en
Pages : 450
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521838597
Category : Juvenile Nonfiction
Languages : en
Pages : 450
Book Description
Publisher Description
Electromagnetic Field Theory for Engineers and Physicists
Author: Günther Lehner
Publisher: Springer Science & Business Media
ISBN: 3540763066
Category : Technology & Engineering
Languages : en
Pages : 687
Book Description
Discussed is the electromagnetic field theory and its mathematical methods. Maxwell’s equations are presented and explained. It follows a detailed discussion of electrostatics, flux, magnetostatics, quasi stationary fields and electromagnetic fields. The author presents how to apply numerical methods like finite differences, finite elements, boundary elements, image charge methods, and Monte-Carlo methods to field theory problems. He offers an outlook on fundamental issues in physics including quantum mechanics. Some of these issues are still unanswered questions. A chapter dedicated to the theory of special relativity, which allows to simplify a number of field theory problems, complements this book. A book whose usefulness is not limited to engineering students, but can be very helpful for physicists and other branches of science.
Publisher: Springer Science & Business Media
ISBN: 3540763066
Category : Technology & Engineering
Languages : en
Pages : 687
Book Description
Discussed is the electromagnetic field theory and its mathematical methods. Maxwell’s equations are presented and explained. It follows a detailed discussion of electrostatics, flux, magnetostatics, quasi stationary fields and electromagnetic fields. The author presents how to apply numerical methods like finite differences, finite elements, boundary elements, image charge methods, and Monte-Carlo methods to field theory problems. He offers an outlook on fundamental issues in physics including quantum mechanics. Some of these issues are still unanswered questions. A chapter dedicated to the theory of special relativity, which allows to simplify a number of field theory problems, complements this book. A book whose usefulness is not limited to engineering students, but can be very helpful for physicists and other branches of science.
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 682
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 682
Book Description
Transmission Lines and Lumped Circuits
Author: Giovanni Miano
Publisher: Elsevier
ISBN: 0080519598
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
The theory of transmission lines is a classical topic of electrical engineering. Recently this topic has received renewed attention and has been a focus of considerable research. This is because the transmisson line theory has found new and important applications in the area of high-speed VLSI interconnects, while it has retained its significance in the area of power transmission. In many applications, transmission lines are connected to nonlinear circuits. For instance, interconnects of high-speed VLSI chips can be modelled as transmission lines loaded with nonlinear elements. These nonlinearities may lead to many new effects such as instability, chaos, generation of higher order harmonics, etc. The mathematical models of transmission lines with nonlinear loads consist of the linear partial differential equations describing the current and voltage dynamics along the lines together with the nonlinear boundary conditions imposed by the nonlinear loads connected to the lines. These nonlinear boundary conditions make the mathematical treatment very difficult. For this reason, the analysis of transmission lines with nonlinear loads has not been addressed adequately in the existing literature. The unique and distinct feature of the proposed book is that it will present systematic, comprehensive, and in-depth analysis of transmission lines with nonlinear loads. - A unified approach for the analysis of networks composed of distributed and lumped circuits - A simple, concise and completely general way to present the wave propagation on transmission lines, including a thorough study of the line equations in characteristic form - Frequency and time domain multiport representations of any linear transmission line - A detailed analysis of the influence on the line characterization of the frequency and space dependence of the line parameters - A rigorous study of the properties of the analytical and numerical solutions of the network equations - The associated discrete circuits and the associated resisitive circuits of transmission lines - Periodic solutions, bifurcations and chaos in transmission lines connected to noninear lumped circuits
Publisher: Elsevier
ISBN: 0080519598
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
The theory of transmission lines is a classical topic of electrical engineering. Recently this topic has received renewed attention and has been a focus of considerable research. This is because the transmisson line theory has found new and important applications in the area of high-speed VLSI interconnects, while it has retained its significance in the area of power transmission. In many applications, transmission lines are connected to nonlinear circuits. For instance, interconnects of high-speed VLSI chips can be modelled as transmission lines loaded with nonlinear elements. These nonlinearities may lead to many new effects such as instability, chaos, generation of higher order harmonics, etc. The mathematical models of transmission lines with nonlinear loads consist of the linear partial differential equations describing the current and voltage dynamics along the lines together with the nonlinear boundary conditions imposed by the nonlinear loads connected to the lines. These nonlinear boundary conditions make the mathematical treatment very difficult. For this reason, the analysis of transmission lines with nonlinear loads has not been addressed adequately in the existing literature. The unique and distinct feature of the proposed book is that it will present systematic, comprehensive, and in-depth analysis of transmission lines with nonlinear loads. - A unified approach for the analysis of networks composed of distributed and lumped circuits - A simple, concise and completely general way to present the wave propagation on transmission lines, including a thorough study of the line equations in characteristic form - Frequency and time domain multiport representations of any linear transmission line - A detailed analysis of the influence on the line characterization of the frequency and space dependence of the line parameters - A rigorous study of the properties of the analytical and numerical solutions of the network equations - The associated discrete circuits and the associated resisitive circuits of transmission lines - Periodic solutions, bifurcations and chaos in transmission lines connected to noninear lumped circuits