Author: Bruce C. Berndt
Publisher: American Mathematical Soc.
ISBN: 0821841785
Category : Mathematics
Languages : en
Pages : 210
Book Description
Ramanujan is recognized as one of the great number theorists of the twentieth century. Here now is the first book to provide an introduction to his work in number theory. Most of Ramanujan's work in number theory arose out of $q$-series and theta functions. This book provides an introduction to these two important subjects and to some of the topics in number theory that are inextricably intertwined with them, including the theory of partitions, sums of squares and triangular numbers, and the Ramanujan tau function. The majority of the results discussed here are originally due to Ramanujan or were rediscovered by him. Ramanujan did not leave us proofs of the thousands of theorems he recorded in his notebooks, and so it cannot be claimed that many of the proofs given in this book are those found by Ramanujan. However, they are all in the spirit of his mathematics. The subjects examined in this book have a rich history dating back to Euler and Jacobi, and they continue to be focal points of contemporary mathematical research. Therefore, at the end of each of the seven chapters, Berndt discusses the results established in the chapter and places them in both historical and contemporary contexts. The book is suitable for advanced undergraduates and beginning graduate students interested in number theory.
Number Theory in the Spirit of Ramanujan
Author: Bruce C. Berndt
Publisher: American Mathematical Soc.
ISBN: 0821841785
Category : Mathematics
Languages : en
Pages : 210
Book Description
Ramanujan is recognized as one of the great number theorists of the twentieth century. Here now is the first book to provide an introduction to his work in number theory. Most of Ramanujan's work in number theory arose out of $q$-series and theta functions. This book provides an introduction to these two important subjects and to some of the topics in number theory that are inextricably intertwined with them, including the theory of partitions, sums of squares and triangular numbers, and the Ramanujan tau function. The majority of the results discussed here are originally due to Ramanujan or were rediscovered by him. Ramanujan did not leave us proofs of the thousands of theorems he recorded in his notebooks, and so it cannot be claimed that many of the proofs given in this book are those found by Ramanujan. However, they are all in the spirit of his mathematics. The subjects examined in this book have a rich history dating back to Euler and Jacobi, and they continue to be focal points of contemporary mathematical research. Therefore, at the end of each of the seven chapters, Berndt discusses the results established in the chapter and places them in both historical and contemporary contexts. The book is suitable for advanced undergraduates and beginning graduate students interested in number theory.
Publisher: American Mathematical Soc.
ISBN: 0821841785
Category : Mathematics
Languages : en
Pages : 210
Book Description
Ramanujan is recognized as one of the great number theorists of the twentieth century. Here now is the first book to provide an introduction to his work in number theory. Most of Ramanujan's work in number theory arose out of $q$-series and theta functions. This book provides an introduction to these two important subjects and to some of the topics in number theory that are inextricably intertwined with them, including the theory of partitions, sums of squares and triangular numbers, and the Ramanujan tau function. The majority of the results discussed here are originally due to Ramanujan or were rediscovered by him. Ramanujan did not leave us proofs of the thousands of theorems he recorded in his notebooks, and so it cannot be claimed that many of the proofs given in this book are those found by Ramanujan. However, they are all in the spirit of his mathematics. The subjects examined in this book have a rich history dating back to Euler and Jacobi, and they continue to be focal points of contemporary mathematical research. Therefore, at the end of each of the seven chapters, Berndt discusses the results established in the chapter and places them in both historical and contemporary contexts. The book is suitable for advanced undergraduates and beginning graduate students interested in number theory.
Number Theory in the Spirit of Liouville
Author: Kenneth S. Williams
Publisher: Cambridge University Press
ISBN: 1107002532
Category : Mathematics
Languages : en
Pages : 307
Book Description
A gentle introduction to Liouville's powerful method in elementary number theory. Suitable for advanced undergraduate and beginning graduate students.
Publisher: Cambridge University Press
ISBN: 1107002532
Category : Mathematics
Languages : en
Pages : 307
Book Description
A gentle introduction to Liouville's powerful method in elementary number theory. Suitable for advanced undergraduate and beginning graduate students.
My Search for Ramanujan
Author: Ken Ono
Publisher: Springer
ISBN: 3319255681
Category : Mathematics
Languages : en
Pages : 235
Book Description
"The son of a prominent Japanese mathematician who came to the United States after World War II, Ken Ono was raised on a diet of high expectations and little praise. Rebelling against his pressure-cooker of a life, Ken determined to drop out of high school to follow his own path. To obtain his father’s approval, he invoked the biography of the famous Indian mathematical prodigy Srinivasa Ramanujan, whom his father revered, who had twice flunked out of college because of his single-minded devotion to mathematics. Ono describes his rocky path through college and graduate school, interweaving Ramanujan’s story with his own and telling how at key moments, he was inspired by Ramanujan and guided by mentors who encouraged him to pursue his interest in exploring Ramanujan’s mathematical legacy. Picking up where others left off, beginning with the great English mathematician G.H. Hardy, who brought Ramanujan to Cambridge in 1914, Ono has devoted his mathematical career to understanding how in his short life, Ramanujan was able to discover so many deep mathematical truths, which Ramanujan believed had been sent to him as visions from a Hindu goddess. And it was Ramanujan who was ultimately the source of reconciliation between Ono and his parents. Ono’s search for Ramanujan ranges over three continents and crosses paths with mathematicians whose lives span the globe and the entire twentieth century and beyond. Along the way, Ken made many fascinating discoveries. The most important and surprising one of all was his own humanity."
Publisher: Springer
ISBN: 3319255681
Category : Mathematics
Languages : en
Pages : 235
Book Description
"The son of a prominent Japanese mathematician who came to the United States after World War II, Ken Ono was raised on a diet of high expectations and little praise. Rebelling against his pressure-cooker of a life, Ken determined to drop out of high school to follow his own path. To obtain his father’s approval, he invoked the biography of the famous Indian mathematical prodigy Srinivasa Ramanujan, whom his father revered, who had twice flunked out of college because of his single-minded devotion to mathematics. Ono describes his rocky path through college and graduate school, interweaving Ramanujan’s story with his own and telling how at key moments, he was inspired by Ramanujan and guided by mentors who encouraged him to pursue his interest in exploring Ramanujan’s mathematical legacy. Picking up where others left off, beginning with the great English mathematician G.H. Hardy, who brought Ramanujan to Cambridge in 1914, Ono has devoted his mathematical career to understanding how in his short life, Ramanujan was able to discover so many deep mathematical truths, which Ramanujan believed had been sent to him as visions from a Hindu goddess. And it was Ramanujan who was ultimately the source of reconciliation between Ono and his parents. Ono’s search for Ramanujan ranges over three continents and crosses paths with mathematicians whose lives span the globe and the entire twentieth century and beyond. Along the way, Ken made many fascinating discoveries. The most important and surprising one of all was his own humanity."
Elementary Methods in Number Theory
Author: Melvyn B. Nathanson
Publisher: Springer Science & Business Media
ISBN: 0387227385
Category : Mathematics
Languages : en
Pages : 518
Book Description
This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.
Publisher: Springer Science & Business Media
ISBN: 0387227385
Category : Mathematics
Languages : en
Pages : 518
Book Description
This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.
Ramanujan: Essays and Surveys
Author: Bruce C. Berndt
Publisher: American Mathematical Soc.
ISBN: 9780821826249
Category : Biography & Autobiography
Languages : en
Pages : 388
Book Description
This book contains essays on Ramanujan and his work that were written especially for this volume. It also includes important survey articles in areas influenced by Ramanujan's mathematics. Most of the articles in the book are nontechnical, but even those that are more technical contain substantial sections that will engage the general reader. The book opens with the only four existing photographs of Ramanujan, presenting historical accounts of them and information about other people in the photos. This section includes an account of a cryptic family history written by his younger brother, S. Lakshmi Narasimhan. Following are articles on Ramanujan's illness by R. A. Rankin, the British physician D. A. B. Young, and Nobel laureate S. Chandrasekhar. They present a study of his symptoms, a convincing diagnosis of the cause of his death, and a thorough exposition of Ramanujan's life as a patient in English sanitariums and nursing homes. Following this are biographies of S. Janaki (Mrs. Ramanujan) and S. Narayana Iyer, Chief Accountant of the Madras Port Trust Office, who first communicated Ramanujan's work to the Journal of the Indian Mathematical Society. The last half of the book begins with a section on ``Ramanujan's Manuscripts and Notebooks''. Included is an important article by G. E. Andrews on Ramanujan's lost notebook. The final two sections feature both nontechnical articles, such as Jonathan and Peter Borwein's ``Ramanujan and pi'', and more technical articles by Freeman Dyson, Atle Selberg, Richard Askey, and G. N. Watson. This volume complements the book Ramanujan: Letters and Commentary, Volume 9, in the AMS series, History of Mathematics. For more on Ramanujan, see these AMS publications Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, Volume 136.H, and Collected Papers of Srinivasa Ramanujan, Volume 159.H, in the AMS Chelsea Publishing series.
Publisher: American Mathematical Soc.
ISBN: 9780821826249
Category : Biography & Autobiography
Languages : en
Pages : 388
Book Description
This book contains essays on Ramanujan and his work that were written especially for this volume. It also includes important survey articles in areas influenced by Ramanujan's mathematics. Most of the articles in the book are nontechnical, but even those that are more technical contain substantial sections that will engage the general reader. The book opens with the only four existing photographs of Ramanujan, presenting historical accounts of them and information about other people in the photos. This section includes an account of a cryptic family history written by his younger brother, S. Lakshmi Narasimhan. Following are articles on Ramanujan's illness by R. A. Rankin, the British physician D. A. B. Young, and Nobel laureate S. Chandrasekhar. They present a study of his symptoms, a convincing diagnosis of the cause of his death, and a thorough exposition of Ramanujan's life as a patient in English sanitariums and nursing homes. Following this are biographies of S. Janaki (Mrs. Ramanujan) and S. Narayana Iyer, Chief Accountant of the Madras Port Trust Office, who first communicated Ramanujan's work to the Journal of the Indian Mathematical Society. The last half of the book begins with a section on ``Ramanujan's Manuscripts and Notebooks''. Included is an important article by G. E. Andrews on Ramanujan's lost notebook. The final two sections feature both nontechnical articles, such as Jonathan and Peter Borwein's ``Ramanujan and pi'', and more technical articles by Freeman Dyson, Atle Selberg, Richard Askey, and G. N. Watson. This volume complements the book Ramanujan: Letters and Commentary, Volume 9, in the AMS series, History of Mathematics. For more on Ramanujan, see these AMS publications Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, Volume 136.H, and Collected Papers of Srinivasa Ramanujan, Volume 159.H, in the AMS Chelsea Publishing series.
Collected Papers of Srinivasa Ramanujan
Author: Srinivasa Ramanujan
Publisher: Cambridge University Press
ISBN: 1107536510
Category : Mathematics
Languages : en
Pages : 393
Book Description
Originally published in 1927, this book presents the collected papers of the renowned Indian mathematician Srinivasa Ramanujan (1887-1920), with editorial contributions from G. H. Hardy (1877-1947). Detailed notes are incorporated throughout and appendices are also included. This book will be of value to anyone with an interest in the works of Ramanujan and the history of mathematics.
Publisher: Cambridge University Press
ISBN: 1107536510
Category : Mathematics
Languages : en
Pages : 393
Book Description
Originally published in 1927, this book presents the collected papers of the renowned Indian mathematician Srinivasa Ramanujan (1887-1920), with editorial contributions from G. H. Hardy (1877-1947). Detailed notes are incorporated throughout and appendices are also included. This book will be of value to anyone with an interest in the works of Ramanujan and the history of mathematics.
Number Theory
Author: W.A. Coppel
Publisher: Springer Science & Business Media
ISBN: 9780387298511
Category : Mathematics
Languages : en
Pages : 392
Book Description
This two-volume book is a modern introduction to the theory of numbers, emphasizing its connections with other branches of mathematics. Part A is accessible to first-year undergraduates and deals with elementary number theory. Part B is more advanced and gives the reader an idea of the scope of mathematics today. The connecting theme is the theory of numbers. By exploring its many connections with other branches a broad picture is obtained. The book contains a treasury of proofs, several of which are gems seldom seen in number theory books.
Publisher: Springer Science & Business Media
ISBN: 9780387298511
Category : Mathematics
Languages : en
Pages : 392
Book Description
This two-volume book is a modern introduction to the theory of numbers, emphasizing its connections with other branches of mathematics. Part A is accessible to first-year undergraduates and deals with elementary number theory. Part B is more advanced and gives the reader an idea of the scope of mathematics today. The connecting theme is the theory of numbers. By exploring its many connections with other branches a broad picture is obtained. The book contains a treasury of proofs, several of which are gems seldom seen in number theory books.
The Man Who Knew Infinity
Author: Robert Kanigel
Publisher: Simon and Schuster
ISBN: 1476763496
Category : Biography & Autobiography
Languages : en
Pages : 464
Book Description
A biography of the Indian mathematician Srinivasa Ramanujan. The book gives a detailed account of his upbringing in India, his mathematical achievements, and his mathematical collaboration with English mathematician G. H. Hardy. The book also reviews the life of Hardy and the academic culture of Cambridge University during the early twentieth century.
Publisher: Simon and Schuster
ISBN: 1476763496
Category : Biography & Autobiography
Languages : en
Pages : 464
Book Description
A biography of the Indian mathematician Srinivasa Ramanujan. The book gives a detailed account of his upbringing in India, his mathematical achievements, and his mathematical collaboration with English mathematician G. H. Hardy. The book also reviews the life of Hardy and the academic culture of Cambridge University during the early twentieth century.
Not Always Buried Deep
Author: Paul Pollack
Publisher: American Mathematical Soc.
ISBN: 0821848801
Category : Mathematics
Languages : en
Pages : 322
Book Description
Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is a thorough introduction to elementary prime number theory, including Dirichlet's theorem on primes in arithmetic progressions, the Brun sieve, and the Erdos-Selberg proof of the prime number theorem. Rather than trying to present a comprehensive treatise, Pollack focuses on topics that are particularly attractive and accessible. Other topics covered include Gauss's theory of cyclotomy and its applications to rational reciprocity laws, Hilbert's solution to Waring's problem, and modern work on perfect numbers. The nature of the material means that little is required in terms of prerequisites: The reader is expected to have prior familiarity with number theory at the level of an undergraduate course and a first course in modern algebra (covering groups, rings, and fields). The exposition is complemented by over 200 exercises and 400 references.
Publisher: American Mathematical Soc.
ISBN: 0821848801
Category : Mathematics
Languages : en
Pages : 322
Book Description
Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is a thorough introduction to elementary prime number theory, including Dirichlet's theorem on primes in arithmetic progressions, the Brun sieve, and the Erdos-Selberg proof of the prime number theorem. Rather than trying to present a comprehensive treatise, Pollack focuses on topics that are particularly attractive and accessible. Other topics covered include Gauss's theory of cyclotomy and its applications to rational reciprocity laws, Hilbert's solution to Waring's problem, and modern work on perfect numbers. The nature of the material means that little is required in terms of prerequisites: The reader is expected to have prior familiarity with number theory at the level of an undergraduate course and a first course in modern algebra (covering groups, rings, and fields). The exposition is complemented by over 200 exercises and 400 references.
An Invitation to Modern Number Theory
Author: Steven J. Miller
Publisher: Princeton University Press
ISBN: 0691215979
Category : Mathematics
Languages : en
Pages : 526
Book Description
In a manner accessible to beginning undergraduates, An Invitation to Modern Number Theory introduces many of the central problems, conjectures, results, and techniques of the field, such as the Riemann Hypothesis, Roth's Theorem, the Circle Method, and Random Matrix Theory. Showing how experiments are used to test conjectures and prove theorems, the book allows students to do original work on such problems, often using little more than calculus (though there are numerous remarks for those with deeper backgrounds). It shows students what number theory theorems are used for and what led to them and suggests problems for further research. Steven Miller and Ramin Takloo-Bighash introduce the problems and the computational skills required to numerically investigate them, providing background material (from probability to statistics to Fourier analysis) whenever necessary. They guide students through a variety of problems, ranging from basic number theory, cryptography, and Goldbach's Problem, to the algebraic structures of numbers and continued fractions, showing connections between these subjects and encouraging students to study them further. In addition, this is the first undergraduate book to explore Random Matrix Theory, which has recently become a powerful tool for predicting answers in number theory. Providing exercises, references to the background literature, and Web links to previous student research projects, An Invitation to Modern Number Theory can be used to teach a research seminar or a lecture class.
Publisher: Princeton University Press
ISBN: 0691215979
Category : Mathematics
Languages : en
Pages : 526
Book Description
In a manner accessible to beginning undergraduates, An Invitation to Modern Number Theory introduces many of the central problems, conjectures, results, and techniques of the field, such as the Riemann Hypothesis, Roth's Theorem, the Circle Method, and Random Matrix Theory. Showing how experiments are used to test conjectures and prove theorems, the book allows students to do original work on such problems, often using little more than calculus (though there are numerous remarks for those with deeper backgrounds). It shows students what number theory theorems are used for and what led to them and suggests problems for further research. Steven Miller and Ramin Takloo-Bighash introduce the problems and the computational skills required to numerically investigate them, providing background material (from probability to statistics to Fourier analysis) whenever necessary. They guide students through a variety of problems, ranging from basic number theory, cryptography, and Goldbach's Problem, to the algebraic structures of numbers and continued fractions, showing connections between these subjects and encouraging students to study them further. In addition, this is the first undergraduate book to explore Random Matrix Theory, which has recently become a powerful tool for predicting answers in number theory. Providing exercises, references to the background literature, and Web links to previous student research projects, An Invitation to Modern Number Theory can be used to teach a research seminar or a lecture class.