Author: Diane L. Herrmann
Publisher: CRC Press
ISBN: 1466554649
Category : Mathematics
Languages : en
Pages : 446
Book Description
Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Number, Shape, & Symmetry
Author: Diane L. Herrmann
Publisher: CRC Press
ISBN: 1466554649
Category : Mathematics
Languages : en
Pages : 446
Book Description
Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Publisher: CRC Press
ISBN: 1466554649
Category : Mathematics
Languages : en
Pages : 446
Book Description
Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Shapes, Space, and Symmetry
Author: Alan Holden
Publisher: Courier Corporation
ISBN: 9780486268514
Category : Mathematics
Languages : en
Pages : 218
Book Description
Explains structure of nine regular solids and many semiregular solids and demonstrates how they can be used to explain mathematics. Instructions for cardboard models. Over 300 illustrations. 1971 edition.
Publisher: Courier Corporation
ISBN: 9780486268514
Category : Mathematics
Languages : en
Pages : 218
Book Description
Explains structure of nine regular solids and many semiregular solids and demonstrates how they can be used to explain mathematics. Instructions for cardboard models. Over 300 illustrations. 1971 edition.
Symmetry: A Very Short Introduction
Author: Ian Stewart
Publisher: OUP Oxford
ISBN: 0191652741
Category : Mathematics
Languages : en
Pages : 161
Book Description
In the 1800s mathematicians introduced a formal theory of symmetry: group theory. Now a branch of abstract algebra, this subject first arose in the theory of equations. Symmetry is an immensely important concept in mathematics and throughout the sciences, and its applications range across the entire subject. Symmetry governs the structure of crystals, innumerable types of pattern formation, how systems change their state as parameters vary; and fundamental physics is governed by symmetries in the laws of nature. It is highly visual, with applications that include animal markings, locomotion, evolutionary biology, elastic buckling, waves, the shape of the Earth, and the form of galaxies. In this Very Short Introduction, Ian Stewart demonstrates its deep implications, and shows how it plays a major role in the current search to unify relativity and quantum theory. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: OUP Oxford
ISBN: 0191652741
Category : Mathematics
Languages : en
Pages : 161
Book Description
In the 1800s mathematicians introduced a formal theory of symmetry: group theory. Now a branch of abstract algebra, this subject first arose in the theory of equations. Symmetry is an immensely important concept in mathematics and throughout the sciences, and its applications range across the entire subject. Symmetry governs the structure of crystals, innumerable types of pattern formation, how systems change their state as parameters vary; and fundamental physics is governed by symmetries in the laws of nature. It is highly visual, with applications that include animal markings, locomotion, evolutionary biology, elastic buckling, waves, the shape of the Earth, and the form of galaxies. In this Very Short Introduction, Ian Stewart demonstrates its deep implications, and shows how it plays a major role in the current search to unify relativity and quantum theory. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Groups and Symmetry: A Guide to Discovering Mathematics
Author: David W. Farmer
Publisher: American Mathematical Soc.
ISBN: 0821804502
Category : Mathematics
Languages : en
Pages : 112
Book Description
Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.
Publisher: American Mathematical Soc.
ISBN: 0821804502
Category : Mathematics
Languages : en
Pages : 112
Book Description
Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.
Mirror Symmetry
Author: Kentaro Hori
Publisher: American Mathematical Soc.
ISBN: 0821829556
Category : Mathematics
Languages : en
Pages : 954
Book Description
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Publisher: American Mathematical Soc.
ISBN: 0821829556
Category : Mathematics
Languages : en
Pages : 954
Book Description
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
The Symmetries of Things
Author: John H. Conway
Publisher: CRC Press
ISBN: 1439864896
Category : Mathematics
Languages : en
Pages : 442
Book Description
Start with a single shape. Repeat it in some way—translation, reflection over a line, rotation around a point—and you have created symmetry. Symmetry is a fundamental phenomenon in art, science, and nature that has been captured, described, and analyzed using mathematical concepts for a long time. Inspired by the geometric intuition of Bill Thurston and empowered by his own analytical skills, John Conway, with his coauthors, has developed a comprehensive mathematical theory of symmetry that allows the description and classification of symmetries in numerous geometric environments. This richly and compellingly illustrated book addresses the phenomenological, analytical, and mathematical aspects of symmetry on three levels that build on one another and will speak to interested lay people, artists, working mathematicians, and researchers.
Publisher: CRC Press
ISBN: 1439864896
Category : Mathematics
Languages : en
Pages : 442
Book Description
Start with a single shape. Repeat it in some way—translation, reflection over a line, rotation around a point—and you have created symmetry. Symmetry is a fundamental phenomenon in art, science, and nature that has been captured, described, and analyzed using mathematical concepts for a long time. Inspired by the geometric intuition of Bill Thurston and empowered by his own analytical skills, John Conway, with his coauthors, has developed a comprehensive mathematical theory of symmetry that allows the description and classification of symmetries in numerous geometric environments. This richly and compellingly illustrated book addresses the phenomenological, analytical, and mathematical aspects of symmetry on three levels that build on one another and will speak to interested lay people, artists, working mathematicians, and researchers.
Symmetry, Shape and Space
Author: L.Christine Kinsey
Publisher: Springer Science & Business Media
ISBN: 9781930190092
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book will appeal to at least three groups of readers: prospective high school teachers, liberal arts students, and parents whose children are studying high school or college math. It is modern in its selection of topics, and in the learning models used by the authors. The book covers some exciting but non-traditional topics from the subject area of geometry. It is also intended for undergraduates and tries to engage their interest in mathematics. Many innovative pedagogical modes are used throughout.
Publisher: Springer Science & Business Media
ISBN: 9781930190092
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book will appeal to at least three groups of readers: prospective high school teachers, liberal arts students, and parents whose children are studying high school or college math. It is modern in its selection of topics, and in the learning models used by the authors. The book covers some exciting but non-traditional topics from the subject area of geometry. It is also intended for undergraduates and tries to engage their interest in mathematics. Many innovative pedagogical modes are used throughout.
Beautiful Symmetry
Author: Alex Berke
Publisher: MIT Press
ISBN: 026253892X
Category : Mathematics
Languages : en
Pages : 165
Book Description
A coloring book that invites readers to explore symmetry and the beauty of math visually. Beautiful Symmetry is a coloring book about math, inviting us to engage with mathematical concepts visually through coloring challenges and visual puzzles. We can explore symmetry and the beauty of mathematics playfully, coloring through ideas usually reserved for advanced courses. The book is for children and adults, for math nerds and math avoiders, for educators, students, and coloring enthusiasts. Through illustration, language that is visual, and words that are jargon-free, the book introduces group theory as the mathematical foundation for discussions of symmetry, covering symmetry groups that include the cyclic groups, frieze groups, and wallpaper groups. The illustrations are drawn by algorithms, following the symmetry rules for each given group. The coloring challenges can be completed and fully realized only on the page; solutions are provided. Online, in a complementary digital edition, the illustrations come to life with animated interactions that show the symmetries that generated them. Traditional math curricula focus on arithmetic and the manipulation of numbers, and may make some learners feel that math is not for them. By offering a more visual and tactile approach, this book shows how math can be for everyone. Combining the playful and the pedagogical, Beautiful Symmetry offers both relaxing entertainment for recreational colorers and a resource for math-curious readers, students, and educators.
Publisher: MIT Press
ISBN: 026253892X
Category : Mathematics
Languages : en
Pages : 165
Book Description
A coloring book that invites readers to explore symmetry and the beauty of math visually. Beautiful Symmetry is a coloring book about math, inviting us to engage with mathematical concepts visually through coloring challenges and visual puzzles. We can explore symmetry and the beauty of mathematics playfully, coloring through ideas usually reserved for advanced courses. The book is for children and adults, for math nerds and math avoiders, for educators, students, and coloring enthusiasts. Through illustration, language that is visual, and words that are jargon-free, the book introduces group theory as the mathematical foundation for discussions of symmetry, covering symmetry groups that include the cyclic groups, frieze groups, and wallpaper groups. The illustrations are drawn by algorithms, following the symmetry rules for each given group. The coloring challenges can be completed and fully realized only on the page; solutions are provided. Online, in a complementary digital edition, the illustrations come to life with animated interactions that show the symmetries that generated them. Traditional math curricula focus on arithmetic and the manipulation of numbers, and may make some learners feel that math is not for them. By offering a more visual and tactile approach, this book shows how math can be for everyone. Combining the playful and the pedagogical, Beautiful Symmetry offers both relaxing entertainment for recreational colorers and a resource for math-curious readers, students, and educators.
Math Games: Skill-Based Practice for Sixth Grade
Author: Ted H. Hull
Publisher: Teacher Created Materials
ISBN: 1425896146
Category : Education
Languages : en
Pages : 155
Book Description
Bring learning mathematical skills into a whole new light for students in 6th grade! This book provides fun and unique skill-based games that encourage whole-group, whole-class, small-group, and partner interaction and collaboration. These activities will reinforce students' knowledge of mathematical skills while keeping learners motivated and engaged. Promote a fun learning environment for students to achieve mathematical success!
Publisher: Teacher Created Materials
ISBN: 1425896146
Category : Education
Languages : en
Pages : 155
Book Description
Bring learning mathematical skills into a whole new light for students in 6th grade! This book provides fun and unique skill-based games that encourage whole-group, whole-class, small-group, and partner interaction and collaboration. These activities will reinforce students' knowledge of mathematical skills while keeping learners motivated and engaged. Promote a fun learning environment for students to achieve mathematical success!
Symmetry, Causality, Mind
Author: Michael Leyton
Publisher: MIT Press
ISBN: 9780262621311
Category : Philosophy
Languages : en
Pages : 644
Book Description
In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. Michael Leyton's arguments about the nature of perception and cognition are fascinating, exciting, and sure to be controversial. In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. He elaborates a system of rules by which the conversion to memory takes place and presents a number of detailed case studies--in perception, linguistics, art, and even political subjugation--that support these rules. Leyton observes that the mind assigns to any shape a causal history explaining how the shape was formed. We cannot help but perceive a deformed can as a dented can. Moreover, by reducing the study of shape to the study of symmetry, he shows that symmetry is crucial to our everyday cognitive processing. Symmetry is the means by which shape is converted into memory. Perception is usually regarded as the recovery of the spatial layout of the environment. Leyton, however, shows that perception is fundamentally the extraction of time from shape. In doing so, he is able to reduce the several areas of computational vision purely to symmetry principles. Examining grammar in linguistics, he argues that a sentence is psychologically represented as a piece of causal history, an archeological relic disinterred by the listener so that the sentence reveals the past. Again through a detailed analysis of art he shows that what the viewer takes to be the experience of a painting is in fact the extraction of time from the shapes of the painting. Finally he highlights crucial aspects of the mind's attempt to recover time in examples of political subjugation.
Publisher: MIT Press
ISBN: 9780262621311
Category : Philosophy
Languages : en
Pages : 644
Book Description
In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. Michael Leyton's arguments about the nature of perception and cognition are fascinating, exciting, and sure to be controversial. In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. He elaborates a system of rules by which the conversion to memory takes place and presents a number of detailed case studies--in perception, linguistics, art, and even political subjugation--that support these rules. Leyton observes that the mind assigns to any shape a causal history explaining how the shape was formed. We cannot help but perceive a deformed can as a dented can. Moreover, by reducing the study of shape to the study of symmetry, he shows that symmetry is crucial to our everyday cognitive processing. Symmetry is the means by which shape is converted into memory. Perception is usually regarded as the recovery of the spatial layout of the environment. Leyton, however, shows that perception is fundamentally the extraction of time from shape. In doing so, he is able to reduce the several areas of computational vision purely to symmetry principles. Examining grammar in linguistics, he argues that a sentence is psychologically represented as a piece of causal history, an archeological relic disinterred by the listener so that the sentence reveals the past. Again through a detailed analysis of art he shows that what the viewer takes to be the experience of a painting is in fact the extraction of time from the shapes of the painting. Finally he highlights crucial aspects of the mind's attempt to recover time in examples of political subjugation.