Nuclear Magnetic Resonance Experiments with Dc SQUID Amplifiers

Nuclear Magnetic Resonance Experiments with Dc SQUID Amplifiers PDF Author: Michael Benedict Heaney
Publisher:
ISBN:
Category :
Languages : en
Pages : 236

Get Book Here

Book Description

Nuclear Magnetic Resonance Experiments with Dc SQUID Amplifiers

Nuclear Magnetic Resonance Experiments with Dc SQUID Amplifiers PDF Author: Michael Benedict Heaney
Publisher:
ISBN:
Category :
Languages : en
Pages : 236

Get Book Here

Book Description


Nuclear Magnetic Resonance Experiments with Dc SQUID Amplifiers

Nuclear Magnetic Resonance Experiments with Dc SQUID Amplifiers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 114

Get Book Here

Book Description
The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al2O3/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 x 1017 in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO3 crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

Nuclear Magnetic Resonance with Dc SQUID (Super-conducting QUantum Interference Device) Preamplifiers

Nuclear Magnetic Resonance with Dc SQUID (Super-conducting QUantum Interference Device) Preamplifiers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 +- 0.5 dB and 1.7 +- 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of ''nuclear spin noise'', the emission of photons by 35Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 x 1016 nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing 35Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in 119Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 1018 nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in 195Pt nuclei has been observed at 55 kHz in a field of 60 gauss. 23 refs., 11 figs.

Dc SQUID Detection of New Magnetic Resonance Phenomena

Dc SQUID Detection of New Magnetic Resonance Phenomena PDF Author: Tycho Sleator
Publisher:
ISBN:
Category :
Languages : en
Pages : 264

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 880

Get Book Here

Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Ultra-Low Field Nuclear Magnetic Resonance

Ultra-Low Field Nuclear Magnetic Resonance PDF Author: Robert Kraus Jr.
Publisher: Oxford University Press
ISBN: 0199347883
Category : Medical
Languages : en
Pages : 266

Get Book Here

Book Description
This book is designed to introduce the reader to the field of NMR/MRI at very low magnetic fields, from milli-Tesla to micro-Tesla, the ultra-low field (ULF) regime. The book is focused on applications to imaging the human brain, and hardware methods primarily based upon pre-polarization methods and SQUID-based detection. The goal of the text is to provide insight and tools for the reader to better understand what applications are best served by ULF NMR/MRI approaches. A discussion of the hardware challenges, such as shielding, operation of SQUID sensors in a dynamic field environment, and pulsed magnetic field generation are presented. One goal of the text is to provide the reader a framework of understanding the approaches to estimation and mitigation of low signal-to-noise and long imaging time, which are the main challenges. Special attention is paid to the combination of MEG and ULF MRI, and the benefits and challenges presented by trying to accomplish both with the same hardware. The book discusses the origin of unique relaxation contrast at ULF, and special considerations for image artifacts and how to correct them (i.e. concomitant gradients, ghost artifacts). A general discussion of MRI, with special consideration to the challenges of imaging at ULF and unique opportunities in pulse sequences, is presented. The book also presents an overview of some of the primary applications of ULF NMR/MRI being pursued.

SQUID Sensors

SQUID Sensors PDF Author: H. Weinstock
Publisher: Springer Science & Business Media
ISBN: 9401156743
Category : Technology & Engineering
Languages : en
Pages : 716

Get Book Here

Book Description
This book willbcof value to anyone who wishes to consider the use of SQUID-based magnetic sensing for anyone of a number of practical applications. The focus here is to examine in detail how SQUID technology is used and how. the results of the measurements obtained can be interpreted to provide useful information in a variety of real-world applications. The concentration is on those areas that have received the most attention, namely bioma~etism and nondestructive evaluation, but. the topics chosen include as well, geophysics, underwater ordnance detection, accelerometry and a few somewhat more exotic applications. To provide a reasonable perspective. an attempt has been made to consider competing technologies for most applications, and in some cases to consider how SQUID-based technology may be integrated with other technologies to provide an optimum total-system configuration. It is also the intention of the editor, that this book will be of major value to those scientists and engineers who will be required to build both the essential components and complete cryogenic SQUID systems which will be utilized in the various applications presented. Thus, there is a comprehensive review of the principles of SQUID operation, and a detailed exposition on the fabrication of high-temperature-superconducting (HTS) SQUIDs. Although the market is currently dominated by low-temperature superconducting (L TS) SQUIDs, it is reasonably certain that in the near future HTS SQUIDs will take over in most situations.

SQUID-detected NMR and MRI in Microtesla Magnetic Fields

SQUID-detected NMR and MRI in Microtesla Magnetic Fields PDF Author: Robert Francis McDermott
Publisher:
ISBN:
Category :
Languages : en
Pages : 310

Get Book Here

Book Description


Superconducting Electronics

Superconducting Electronics PDF Author: Harold Weinstock
Publisher: Springer Science & Business Media
ISBN: 3642838855
Category : Technology & Engineering
Languages : en
Pages : 451

Get Book Here

Book Description
The genesis of the NATO Advanced Study Institute (ASI) upon which this volume is based, occurred during the summer of 1986 when we came to the realization that there had been significant progress during the early 1980's in the field of superconducting electronics and in applications of this technology. Despite this progress, there was a perception among many engineers and scientists that, with the possible exception of a limited number of esoteric fundamental studies and applications (e.g., the Josephson voltage standard or the SQUID magnetometer), there was no significant future for electronic systems incorporating superconducting elements. One of the major reasons for this perception was the aversion to handling liquid helium or including a closed-cycle helium liquefier. In addition, many critics felt that IBM's cancellation of its superconducting computer project in 1983 was "proof" that superconductors could not possibly compete with semiconductors in high-speed signal processing. From our perspective, the need for liquid helium was outweighed by improved performance, i. e., higher speed, lower noise, greater sensitivity and much lower power dissipation. For many commercial, medical, scientific and military applications, these attributes can lead to either enhanced capability (e.g., compact real-time signal processing) or measurements that cannot be made using any other technology (e.g., SQUID magnetometry to detect neuromagnetic activity).

The New Superconducting Electronics

The New Superconducting Electronics PDF Author: H. Weinstock
Publisher: Springer Science & Business Media
ISBN: 940111918X
Category : Technology & Engineering
Languages : en
Pages : 460

Get Book Here

Book Description
This volume is based on the proceedings of the NATO-sponsored Advanced Studies Institute (ASn on The New Superconducting Electronics (held 9-20 August 1992 in Waterville Valley, New Hampshire USA). The contents herein are intended to provide an update to an earlier volume on the same subject (based on a NATO ASI held in 1988). Four years seems a relatively short time interval, and our title itself, featuring The New Superconducting Electronics, may appear somewhat pretentious. Nevertheless, we feel strongly that the ASI fostered a timely reexamination of the technical progress and application potential of this rapid-paced field. There are, indeed, many new avenues for technological innovation which were not envisioned or considered possible four years ago. The greatest advances by far have occurred with regard to oxide superconductors, the so-called high transition-temperature superconductors, known in short as HTS. These advances are mainly in the ability to fabricate both (1) high-quality, relatively large-area films for microwave filters and (2) multilayer device structures, principally superconducting-normal-superconducting (SNS) Josephson junctions, for superconducting-quantum-interference-device (SQUID) magnetometers. Additionally, we have seen the invention and development of the flux-flow transistor, a planar three-terminal device. During the earlier ASI only the very first HTS films with adequate critical-current density had just been fabricated, and these were of limited area and had high resistance for microwave current.