Author: Mr. Jean-Francois Dauphin
Publisher: International Monetary Fund
ISBN:
Category : Business & Economics
Languages : en
Pages : 45
Book Description
This paper describes recent work to strengthen nowcasting capacity at the IMF’s European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning (ML) algorithms to nowcast GDP growth across a heterogenous group of European economies during normal and crisis times. Most of our methods significantly outperform the AR(1) benchmark model. Our DFMs tend to perform better during normal times while many of the ML methods we used performed strongly at identifying turning points. Our approach is easily applicable to other countries, subject to data availability.
Nowcasting GDP - A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies
Author: Mr. Jean-Francois Dauphin
Publisher: International Monetary Fund
ISBN:
Category : Business & Economics
Languages : en
Pages : 45
Book Description
This paper describes recent work to strengthen nowcasting capacity at the IMF’s European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning (ML) algorithms to nowcast GDP growth across a heterogenous group of European economies during normal and crisis times. Most of our methods significantly outperform the AR(1) benchmark model. Our DFMs tend to perform better during normal times while many of the ML methods we used performed strongly at identifying turning points. Our approach is easily applicable to other countries, subject to data availability.
Publisher: International Monetary Fund
ISBN:
Category : Business & Economics
Languages : en
Pages : 45
Book Description
This paper describes recent work to strengthen nowcasting capacity at the IMF’s European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning (ML) algorithms to nowcast GDP growth across a heterogenous group of European economies during normal and crisis times. Most of our methods significantly outperform the AR(1) benchmark model. Our DFMs tend to perform better during normal times while many of the ML methods we used performed strongly at identifying turning points. Our approach is easily applicable to other countries, subject to data availability.
The Oxford Handbook of Economic Forecasting
Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Time Series Analysis by State Space Methods
Author: James Durbin
Publisher: OUP Oxford
ISBN: 0191627194
Category : Business & Economics
Languages : en
Pages : 369
Book Description
This new edition updates Durbin & Koopman's important text on the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbance terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. Additions to this second edition include the filtering of nonlinear and non-Gaussian series. Part I of the book obtains the mean and variance of the state, of a variable intended to measure the effect of an interaction and of regression coefficients, in terms of the observations. Part II extends the treatment to nonlinear and non-normal models. For these, analytical solutions are not available so methods are based on simulation.
Publisher: OUP Oxford
ISBN: 0191627194
Category : Business & Economics
Languages : en
Pages : 369
Book Description
This new edition updates Durbin & Koopman's important text on the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbance terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. Additions to this second edition include the filtering of nonlinear and non-Gaussian series. Part I of the book obtains the mean and variance of the state, of a variable intended to measure the effect of an interaction and of regression coefficients, in terms of the observations. Part II extends the treatment to nonlinear and non-normal models. For these, analytical solutions are not available so methods are based on simulation.
Data Science for Economics and Finance
Author: Sergio Consoli
Publisher: Springer Nature
ISBN: 3030668916
Category : Application software
Languages : en
Pages : 357
Book Description
This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Publisher: Springer Nature
ISBN: 3030668916
Category : Application software
Languages : en
Pages : 357
Book Description
This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Regime-Switching Factor Models and Nowcasting with Big Data
Author: Omer Faruk Akbal
Publisher: International Monetary Fund
ISBN:
Category :
Languages : en
Pages : 28
Book Description
This paper shows that the Expectation-Maximization (EM) algorithm for regime-switching dynamic factor models provides satisfactory performance relative to other estimation methods and delivers a good trade-off between accuracy and speed, which makes it especially useful for large dimensional data. Unlike traditional numerical maximization approaches, this methodology benefits from closed-form solutions for parameter estimation, enhancing its practicality for real-time applications and historical data exercises with focus on frequent updates. In a nowcasting application to vintage US data, I study the information content and relative performance of regime-switching model after each data releases in a fifteen year period, which was only feasible due to the time efficiency of the proposed estimation methodology. While existing literature has already acknowledged the performance improvement of nowcasting models under regime-switching, this paper shows that the superior nowcasting performance observed particularly when key economic indicators are released. In a backcasting exercise, I show that the model can closely match the recession starting and ending dates of the NBER despite having less information than actual committee meetings, where the fit between actual dates and model estimates becomes more apparent with the additional available information and recession end dates are fully covered with a lag of three to six months. Given that the EM algorithm proposed in this paper is suitable for various regime-switching configurations, this paper provides economists and policymakers with a valuable tool for conducting comprehensive analyses, ranging from point estimates to information decomposition and persistence of recessions in larger datasets.
Publisher: International Monetary Fund
ISBN:
Category :
Languages : en
Pages : 28
Book Description
This paper shows that the Expectation-Maximization (EM) algorithm for regime-switching dynamic factor models provides satisfactory performance relative to other estimation methods and delivers a good trade-off between accuracy and speed, which makes it especially useful for large dimensional data. Unlike traditional numerical maximization approaches, this methodology benefits from closed-form solutions for parameter estimation, enhancing its practicality for real-time applications and historical data exercises with focus on frequent updates. In a nowcasting application to vintage US data, I study the information content and relative performance of regime-switching model after each data releases in a fifteen year period, which was only feasible due to the time efficiency of the proposed estimation methodology. While existing literature has already acknowledged the performance improvement of nowcasting models under regime-switching, this paper shows that the superior nowcasting performance observed particularly when key economic indicators are released. In a backcasting exercise, I show that the model can closely match the recession starting and ending dates of the NBER despite having less information than actual committee meetings, where the fit between actual dates and model estimates becomes more apparent with the additional available information and recession end dates are fully covered with a lag of three to six months. Given that the EM algorithm proposed in this paper is suitable for various regime-switching configurations, this paper provides economists and policymakers with a valuable tool for conducting comprehensive analyses, ranging from point estimates to information decomposition and persistence of recessions in larger datasets.
Alternative Economic Indicators
Author: C. James Hueng
Publisher: W.E. Upjohn Institute
ISBN: 0880996765
Category : Business & Economics
Languages : en
Pages : 133
Book Description
Policymakers and business practitioners are eager to gain access to reliable information on the state of the economy for timely decision making. More so now than ever. Traditional economic indicators have been criticized for delayed reporting, out-of-date methodology, and neglecting some aspects of the economy. Recent advances in economic theory, econometrics, and information technology have fueled research in building broader, more accurate, and higher-frequency economic indicators. This volume contains contributions from a group of prominent economists who address alternative economic indicators, including indicators in the financial market, indicators for business cycles, and indicators of economic uncertainty.
Publisher: W.E. Upjohn Institute
ISBN: 0880996765
Category : Business & Economics
Languages : en
Pages : 133
Book Description
Policymakers and business practitioners are eager to gain access to reliable information on the state of the economy for timely decision making. More so now than ever. Traditional economic indicators have been criticized for delayed reporting, out-of-date methodology, and neglecting some aspects of the economy. Recent advances in economic theory, econometrics, and information technology have fueled research in building broader, more accurate, and higher-frequency economic indicators. This volume contains contributions from a group of prominent economists who address alternative economic indicators, including indicators in the financial market, indicators for business cycles, and indicators of economic uncertainty.
Dynamic Factor Models
Author: Jörg Breitung
Publisher:
ISBN: 9783865580979
Category :
Languages : en
Pages : 29
Book Description
Publisher:
ISBN: 9783865580979
Category :
Languages : en
Pages : 29
Book Description
Handbook of Economic Forecasting
Author: Graham Elliott
Publisher: Newnes
ISBN: 0444536841
Category : Business & Economics
Languages : en
Pages : 719
Book Description
The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics
Publisher: Newnes
ISBN: 0444536841
Category : Business & Economics
Languages : en
Pages : 719
Book Description
The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics
Macroeconomic Forecasting in the Era of Big Data
Author: Peter Fuleky
Publisher: Springer Nature
ISBN: 3030311503
Category : Business & Economics
Languages : en
Pages : 716
Book Description
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Publisher: Springer Nature
ISBN: 3030311503
Category : Business & Economics
Languages : en
Pages : 716
Book Description
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
A Dynamic Use Of Survey Data And High Frequency Model Forecasting
Author: Yoshihisa Inada
Publisher: World Scientific
ISBN: 9813232382
Category : Business & Economics
Languages : en
Pages : 126
Book Description
This volume investigates the accuracy and dynamic performance of a high-frequency forecast model for the Japanese and United States economies based on the Current Quarter Model (CQM) or High Frequency Model (HFM) developed by the late Professor Emeritus Lawrence R. Klein. It also presents a survey of recent developments in high-frequency forecasts and gives an example application of the CQM model in forecasting Gross Regional Products (GRPs).
Publisher: World Scientific
ISBN: 9813232382
Category : Business & Economics
Languages : en
Pages : 126
Book Description
This volume investigates the accuracy and dynamic performance of a high-frequency forecast model for the Japanese and United States economies based on the Current Quarter Model (CQM) or High Frequency Model (HFM) developed by the late Professor Emeritus Lawrence R. Klein. It also presents a survey of recent developments in high-frequency forecasts and gives an example application of the CQM model in forecasting Gross Regional Products (GRPs).