Nowcasting GDP - A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies

Nowcasting GDP - A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies PDF Author: Mr. Jean-Francois Dauphin
Publisher: International Monetary Fund
ISBN:
Category : Business & Economics
Languages : en
Pages : 45

Get Book Here

Book Description
This paper describes recent work to strengthen nowcasting capacity at the IMF’s European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning (ML) algorithms to nowcast GDP growth across a heterogenous group of European economies during normal and crisis times. Most of our methods significantly outperform the AR(1) benchmark model. Our DFMs tend to perform better during normal times while many of the ML methods we used performed strongly at identifying turning points. Our approach is easily applicable to other countries, subject to data availability.

Nowcasting GDP - A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies

Nowcasting GDP - A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies PDF Author: Mr. Jean-Francois Dauphin
Publisher: International Monetary Fund
ISBN:
Category : Business & Economics
Languages : en
Pages : 45

Get Book Here

Book Description
This paper describes recent work to strengthen nowcasting capacity at the IMF’s European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning (ML) algorithms to nowcast GDP growth across a heterogenous group of European economies during normal and crisis times. Most of our methods significantly outperform the AR(1) benchmark model. Our DFMs tend to perform better during normal times while many of the ML methods we used performed strongly at identifying turning points. Our approach is easily applicable to other countries, subject to data availability.

Computational Statistical Methodologies and Modeling for Artificial Intelligence

Computational Statistical Methodologies and Modeling for Artificial Intelligence PDF Author: Priyanka Harjule
Publisher: CRC Press
ISBN: 1000831078
Category : Computers
Languages : en
Pages : 389

Get Book Here

Book Description
This book covers computational statistics-based approaches for Artificial Intelligence. The aim of this book is to provide comprehensive coverage of the fundamentals through the applications of the different kinds of mathematical modelling and statistical techniques and describing their applications in different Artificial Intelligence systems. The primary users of this book will include researchers, academicians, postgraduate students, and specialists in the areas of data science, mathematical modelling, and Artificial Intelligence. It will also serve as a valuable resource for many others in the fields of electrical, computer, and optical engineering. The key features of this book are: Presents development of several real-world problem applications and experimental research in the field of computational statistics and mathematical modelling for Artificial Intelligence Examines the evolution of fundamental research into industrialized research and the transformation of applied investigation into real-time applications Examines the applications involving analytical and statistical solutions, and provides foundational and advanced concepts for beginners and industry professionals Provides a dynamic perspective to the concept of computational statistics for analysis of data and applications in intelligent systems with an objective of ensuring sustainability issues for ease of different stakeholders in various fields Integrates recent methodologies and challenges by employing mathematical modeling and statistical techniques for Artificial Intelligence

Kingdom of Eswatini

Kingdom of Eswatini PDF Author: International Monetary Fund. African Dept.
Publisher: International Monetary Fund
ISBN:
Category :
Languages : en
Pages : 26

Get Book Here

Book Description
Kingdom of Eswatini: Selected Issues

Completing the Market: Generating Shadow CDS Spreads by Machine Learning

Completing the Market: Generating Shadow CDS Spreads by Machine Learning PDF Author: Nan Hu
Publisher: International Monetary Fund
ISBN: 1513524089
Category : Business & Economics
Languages : en
Pages : 37

Get Book Here

Book Description
We compared the predictive performance of a series of machine learning and traditional methods for monthly CDS spreads, using firms’ accounting-based, market-based and macroeconomics variables for a time period of 2006 to 2016. We find that ensemble machine learning methods (Bagging, Gradient Boosting and Random Forest) strongly outperform other estimators, and Bagging particularly stands out in terms of accuracy. Traditional credit risk models using OLS techniques have the lowest out-of-sample prediction accuracy. The results suggest that the non-linear machine learning methods, especially the ensemble methods, add considerable value to existent credit risk prediction accuracy and enable CDS shadow pricing for companies missing those securities.

Lasso Regressions and Forecasting Models in Applied Stress Testing

Lasso Regressions and Forecasting Models in Applied Stress Testing PDF Author: Mr.Jorge A. Chan-Lau
Publisher: International Monetary Fund
ISBN: 1475599021
Category : Business & Economics
Languages : en
Pages : 34

Get Book Here

Book Description
Model selection and forecasting in stress tests can be facilitated using machine learning techniques. These techniques have proved robust in other fields for dealing with the curse of dimensionality, a situation often encountered in applied stress testing. Lasso regressions, in particular, are well suited for building forecasting models when the number of potential covariates is large, and the number of observations is small or roughly equal to the number of covariates. This paper presents a conceptual overview of lasso regressions, explains how they fit in applied stress tests, describes its advantages over other model selection methods, and illustrates their application by constructing forecasting models of sectoral probabilities of default in an advanced emerging market economy.

FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk

FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk PDF Author: Majid Bazarbash
Publisher: International Monetary Fund
ISBN: 1498314422
Category : Business & Economics
Languages : en
Pages : 34

Get Book Here

Book Description
Recent advances in digital technology and big data have allowed FinTech (financial technology) lending to emerge as a potentially promising solution to reduce the cost of credit and increase financial inclusion. However, machine learning (ML) methods that lie at the heart of FinTech credit have remained largely a black box for the nontechnical audience. This paper contributes to the literature by discussing potential strengths and weaknesses of ML-based credit assessment through (1) presenting core ideas and the most common techniques in ML for the nontechnical audience; and (2) discussing the fundamental challenges in credit risk analysis. FinTech credit has the potential to enhance financial inclusion and outperform traditional credit scoring by (1) leveraging nontraditional data sources to improve the assessment of the borrower’s track record; (2) appraising collateral value; (3) forecasting income prospects; and (4) predicting changes in general conditions. However, because of the central role of data in ML-based analysis, data relevance should be ensured, especially in situations when a deep structural change occurs, when borrowers could counterfeit certain indicators, and when agency problems arising from information asymmetry could not be resolved. To avoid digital financial exclusion and redlining, variables that trigger discrimination should not be used to assess credit rating.

Seeing in the Dark

Seeing in the Dark PDF Author: Mr.Andrew Tiffin
Publisher: International Monetary Fund
ISBN: 1513568264
Category : Computers
Languages : en
Pages : 20

Get Book Here

Book Description
Macroeconomic analysis in Lebanon presents a distinct challenge. For example, long delays in the publication of GDP data mean that our analysis often relies on proxy variables, and resembles an extended version of the “nowcasting” challenge familiar to many central banks. Addressing this problem—and mindful of the pitfalls of extracting information from a large number of correlated proxies—we explore some recent techniques from the machine learning literature. We focus on two popular techniques (Elastic Net regression and Random Forests) and provide an estimation procedure that is intuitively familiar and well suited to the challenging features of Lebanon’s data.

Advances in Econometrics

Advances in Econometrics PDF Author: Werner Hildenbrand
Publisher: Cambridge University Press
ISBN: 9780521312677
Category : Business & Economics
Languages : en
Pages : 316

Get Book Here

Book Description
This volume includes papers delivered at the Fourth World Congress of the Econometric Society. It will interest economic theorists and econometricians working in universities, government, and business and financial institutions.

Statistical Methods for Forecasting

Statistical Methods for Forecasting PDF Author: Bovas Abraham
Publisher: John Wiley & Sons
ISBN: 0470317299
Category : Mathematics
Languages : en
Pages : 474

Get Book Here

Book Description
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book, it must be said, lives up to the words on its advertising cover: 'Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.' It does just that!" -Journal of the Royal Statistical Society "A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series analysis by PhD students; or to support a concentration in quantitative methods for MBA students; or as a work in applied statistics for advanced undergraduates." -Choice Statistical Methods for Forecasting is a comprehensive, readable treatment of statistical methods and models used to produce short-term forecasts. The interconnections between the forecasting models and methods are thoroughly explained, and the gap between theory and practice is successfully bridged. Special topics are discussed, such as transfer function modeling; Kalman filtering; state space models; Bayesian forecasting; and methods for forecast evaluation, comparison, and control. The book provides time series, autocorrelation, and partial autocorrelation plots, as well as examples and exercises using real data. Statistical Methods for Forecasting serves as an outstanding textbook for advanced undergraduate and graduate courses in statistics, business, engineering, and the social sciences, as well as a working reference for professionals in business, industry, and government.

Big Data

Big Data PDF Author:
Publisher:
ISBN:
Category : Competition, International
Languages : en
Pages : 156

Get Book Here

Book Description