Notions of Positivity and the Geometry of Polynomials

Notions of Positivity and the Geometry of Polynomials PDF Author: Petter Brändén
Publisher: Springer Science & Business Media
ISBN: 3034801424
Category : Mathematics
Languages : en
Pages : 413

Get Book Here

Book Description
The book consists of solicited articles from a select group of mathematicians and physicists working at the interface between positivity and the geometry, combinatorics or analysis of polynomials of one or several variables. It is dedicated to the memory of Julius Borcea (1968-2009), a distinguished mathematician, Professor at the University of Stockholm. With his extremely original contributions and broad vision, his impact on the topics of the planned volume cannot be underestimated. All contributors knew or have exchanged ideas with Dr. Borcea, and their articles reflect, at least partially, his heritage.

Notions of Positivity and the Geometry of Polynomials

Notions of Positivity and the Geometry of Polynomials PDF Author: Petter Brändén
Publisher: Springer Science & Business Media
ISBN: 3034801424
Category : Mathematics
Languages : en
Pages : 413

Get Book Here

Book Description
The book consists of solicited articles from a select group of mathematicians and physicists working at the interface between positivity and the geometry, combinatorics or analysis of polynomials of one or several variables. It is dedicated to the memory of Julius Borcea (1968-2009), a distinguished mathematician, Professor at the University of Stockholm. With his extremely original contributions and broad vision, his impact on the topics of the planned volume cannot be underestimated. All contributors knew or have exchanged ideas with Dr. Borcea, and their articles reflect, at least partially, his heritage.

Positive Polynomials

Positive Polynomials PDF Author: Alexander Prestel
Publisher: Springer Science & Business Media
ISBN: 3662046482
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
Positivity is one of the most basic mathematical concepts, involved in many areas of mathematics (analysis, real algebraic geometry, functional analysis, etc.). The main objective of the book is to give useful characterizations of polynomials. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed.

Handbook on Semidefinite, Conic and Polynomial Optimization

Handbook on Semidefinite, Conic and Polynomial Optimization PDF Author: Miguel F. Anjos
Publisher: Springer Science & Business Media
ISBN: 1461407699
Category : Business & Economics
Languages : en
Pages : 955

Get Book Here

Book Description
Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.

Moments, Positive Polynomials and Their Applications

Moments, Positive Polynomials and Their Applications PDF Author: Jean-Bernard Lasserre
Publisher: World Scientific
ISBN: 1848164467
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources

Handbook of Enumerative Combinatorics

Handbook of Enumerative Combinatorics PDF Author: Miklos Bona
Publisher: CRC Press
ISBN: 1482220865
Category : Mathematics
Languages : en
Pages : 1073

Get Book Here

Book Description
Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he

Certificates of Positivity for Real Polynomials

Certificates of Positivity for Real Polynomials PDF Author: Victoria Powers
Publisher: Springer Nature
ISBN: 3030855473
Category : Mathematics
Languages : en
Pages : 161

Get Book Here

Book Description
This book collects and explains the many theorems concerning the existence of certificates of positivity for polynomials that are positive globally or on semialgebraic sets. A certificate of positivity for a real polynomial is an algebraic identity that gives an immediate proof of a positivity condition for the polynomial. Certificates of positivity have their roots in fundamental work of David Hilbert from the late 19th century on positive polynomials and sums of squares. Because of the numerous applications of certificates of positivity in mathematics, applied mathematics, engineering, and other fields, it is desirable to have methods for finding, describing, and characterizing them. For many of the topics covered in this book, appropriate algorithms, computational methods, and applications are discussed. This volume contains a comprehensive, accessible, up-to-date treatment of certificates of positivity, written by an expert in the field. It provides an overview of both the theory and computational aspects of the subject, and includes many of the recent and exciting developments in the area. Background information is given so that beginning graduate students and researchers who are not specialists can learn about this fascinating subject. Furthermore, researchers who work on certificates of positivity or use them in applications will find this a useful reference for their work.

Notions of Positivity and the Geometry of Polynomials

Notions of Positivity and the Geometry of Polynomials PDF Author: Petter Brändén
Publisher: Birkhäuser
ISBN: 9783034801430
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
The book consists of solicited articles from a select group of mathematicians and physicists working at the interface between positivity and the geometry, combinatorics or analysis of polynomials of one or several variables. It is dedicated to the memory of Julius Borcea (1968-2009), a distinguished mathematician, Professor at the University of Stockholm. With his extremely original contributions and broad vision, his impact on the topics of the planned volume cannot be underestimated. All contributors knew or have exchanged ideas with Dr. Borcea, and their articles reflect, at least partially, his heritage.

Modern Trends in Constructive Function Theory

Modern Trends in Constructive Function Theory PDF Author: E. B. Saff
Publisher: American Mathematical Soc.
ISBN: 1470425343
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
Contains the proceedings of the conference Constructive Functions 2014, held in May 2014. The papers in this volume include results on polynomial approximation, rational approximation, Log-optimal configurations on the sphere, random continued fractions, ratio asymptotics for multiple orthogonal polynomials, the bivariate trigonometric moment problem, and random polynomials.

Analysis of Operators on Function Spaces

Analysis of Operators on Function Spaces PDF Author: Alexandru Aleman
Publisher: Springer
ISBN: 3030146405
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.

Recent Progress in Function Theory and Operator Theory

Recent Progress in Function Theory and Operator Theory PDF Author: Alberto A. Condori
Publisher: American Mathematical Society
ISBN: 1470472465
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
This volume contains the proceedings of the AMS Special Session on Recent Progress in Function Theory and Operator Theory, held virtually on April 6, 2022. Function theory is a classical subject that examines the properties of individual elements in a function space, while operator theory usually deals with concrete operators acting on such spaces or other structured collections of functions. These topics occupy a central position in analysis, with important connections to partial differential equations, spectral theory, approximation theory, and several complex variables. With the aid of certain canonical representations or “models”, the study of general operators can often be reduced to that of the operator of multiplication by one or several independent variables, acting on spaces of analytic functions or compressions of this operator to co-invariant subspaces. In this way, a detailed understanding of operators becomes connected with natural questions concerning analytic functions, such as zero sets, constructions of functions constrained by norms or interpolation, multiplicative structures granted by factorizations in spaces of analytic functions, and so forth. In many cases, non-obvious problems initially motivated by operator-theoretic considerations turn out to be interesting on their own, leading to unexpected challenges in function theory. The research papers in this volume deal with the interplay between function theory and operator theory and the way in which they influence each other.