Normal Two-dimensional Singularities

Normal Two-dimensional Singularities PDF Author: Henry B. Laufer
Publisher: Princeton University Press
ISBN: 9780691081007
Category : Mathematics
Languages : en
Pages : 180

Get Book Here

Book Description
A survey, thorough and timely, of the singularities of two-dimensional normal complex analytic varieties, the volume summarizes the results obtained since Hirzebruch's thesis (1953) and presents new contributions. First, the singularity is resolved and shown to be classified by its resolution; then, resolutions are classed by the use of spaces with nilpotents; finally, the spaces with nilpotents are determined by means of the local ring structure of the singularity.

Normal Two-dimensional Singularities

Normal Two-dimensional Singularities PDF Author: Henry B. Laufer
Publisher: Princeton University Press
ISBN: 9780691081007
Category : Mathematics
Languages : en
Pages : 180

Get Book Here

Book Description
A survey, thorough and timely, of the singularities of two-dimensional normal complex analytic varieties, the volume summarizes the results obtained since Hirzebruch's thesis (1953) and presents new contributions. First, the singularity is resolved and shown to be classified by its resolution; then, resolutions are classed by the use of spaces with nilpotents; finally, the spaces with nilpotents are determined by means of the local ring structure of the singularity.

Introduction to Singularities

Introduction to Singularities PDF Author: Shihoko Ishii
Publisher: Springer
ISBN: 443155081X
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundaries of which correspond to singular varieties. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dim ensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied.

Normal Two-Dimensional Singularities

Normal Two-Dimensional Singularities PDF Author: Henry B. Laufer
Publisher: Princeton University Press
ISBN: 1400881749
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
A survey, thorough and timely, of the singularities of two-dimensional normal complex analytic varieties, the volume summarizes the results obtained since Hirzebruch's thesis (1953) and presents new contributions. First, the singularity is resolved and shown to be classified by its resolution; then, resolutions are classed by the use of spaces with nilpotents; finally, the spaces with nilpotents are determined by means of the local ring structure of the singularity.

Singularities, Part 2

Singularities, Part 2 PDF Author: Peter Orlik
Publisher: American Mathematical Soc.
ISBN: 0821814664
Category : Mathematics
Languages : en
Pages : 698

Get Book Here

Book Description
On April 7-10, 1980, the American Mathematical Society sponsored a Symposium on the Mathematical Heritage of Henri Poincari, held at Indiana University, Bloomington, Indiana. This work presents the written versions of all but three of the invited talks presented at this Symposium. It contains 2 papers by invited speakers who aren't able to attend.

4-manifolds

4-manifolds PDF Author: Selman Akbulut
Publisher: Oxford University Press
ISBN: 0198784864
Category : Mathematics
Languages : en
Pages : 275

Get Book Here

Book Description
This book presents the topology of smooth 4-manifolds in an intuitive self-contained way, developed over a number of years by Professor Akbulut. The text is aimed at graduate students and focuses on the teaching and learning of the subject, giving a direct approach to constructions and theorems which are supplemented by exercises to help the reader work through the details not covered in the proofs. The book contains a hundred colour illustrations to demonstrate the ideas rather than providing long-winded and potentially unclear explanations. Key results have been selected that relate to the material discussed and the author has provided examples of how to analyse them with the techniques developed in earlier chapters.

Trends in Representation Theory of Algebras and Related Topics

Trends in Representation Theory of Algebras and Related Topics PDF Author: Andrzej Skowroński
Publisher: European Mathematical Society
ISBN: 9783037190623
Category : Representations of algebras
Languages : en
Pages : 732

Get Book Here

Book Description
This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatorics, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development. The topics under discussion include diagram algebras, Brauer algebras, cellular algebras, quasi-hereditary algebras, Hall algebras, Hecke algebras, symplectic reflection algebras, Cherednik algebras, Kashiwara crystals, Fock spaces, preprojective algebras, cluster algebras, rank varieties, varieties of algebras and modules, moduli of representations of quivers, semi-invariants of quivers, Cohen-Macaulay modules, singularities, coherent sheaves, derived categories, spectral representation theory, Coxeter polynomials, Auslander-Reiten theory, Calabi-Yau triangulated categories, Poincare duality spaces, selfinjective algebras, periodic algebras, stable module categories, Hochschild cohomologies, deformations of algebras, Galois coverings of algebras, tilting theory, algebras of small homological dimensions, representation types of algebras, and model theory. This book consists of fifteen self-contained expository survey articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. They contain a large number of open problems and give new perspectives for research in the field.

Algebraic Geometry and Commutative Algebra

Algebraic Geometry and Commutative Algebra PDF Author: Hiroaki Hijikata
Publisher: Academic Press
ISBN: 1483265056
Category : Mathematics
Languages : en
Pages : 407

Get Book Here

Book Description
Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata presents a collection of papers on algebraic geometry and commutative algebra in honor of Masayoshi Nagata for his significant contributions to commutative algebra. Topics covered range from Weierstrass models and endomorphism algebras of abelian varieties to the generic Torelli theorem for hypersurfaces in compact irreducible hermitian symmetric spaces. Coarse moduli spaces for curves are also discussed, along with discriminants of curves of genus 2 and arithmetic surfaces. Comprised of 14 chapters, this volume begins by describing a basic fibration as a Weierstrass model, with emphasis on elliptic threefolds with a section. The reader is then introduced to canonical bundles of analytic surfaces of class VII0 with curves; Lifting Problem on ideal-adically complete noetherian rings; and the canonical ring of a curve. Subsequent chapters deal with algebraic surfaces for regular systems of weights; elementary transformations of algebraic vector bundles; the irreducibility of the first differential equation of Painlevé; and F-pure normal rings of dimension two. The book concludes with an assessment of the existence of some curves. This monograph will be a useful resource for practitioners and researchers in algebra and geometry.

Complex Analysis and Related Topics

Complex Analysis and Related Topics PDF Author: E. Ramirez de Arellano
Publisher: Birkhäuser
ISBN: 3034886985
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
This volume, addressed to researchers and postgraduate students, compiles up-to-date research and expository papers on different aspects of complex analysis, including relations to operator theory and hypercomplex analysis. Subjects include the Schrödinger equation, subelliptic operators, Lie algebras and superalgebras, among others.

Algebraic Geometry

Algebraic Geometry PDF Author: J. S. Milne
Publisher: Allied Publishers
ISBN: 9788177644548
Category : Geometry, Algebraic
Languages : en
Pages : 232

Get Book Here

Book Description


Algebraic Geometry

Algebraic Geometry PDF Author: Daniel Bump
Publisher: World Scientific
ISBN: 9789810235611
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
This is a graduate-level text on algebraic geometry that provides a quick and fully self-contained development of the fundamentals, including all commutative algebra which is used. A taste of the deeper theory is given: some topics, such as local algebra and ramification theory, are treated in depth. The book culminates with a selection of topics from the theory of algebraic curves, including the Riemann-Roch theorem, elliptic curves, the zeta function of a curve over a finite field, and the Riemann hypothesis for elliptic curves.