Nonvolatile Memory Technologies with Emphasis on Flash

Nonvolatile Memory Technologies with Emphasis on Flash PDF Author: Joe Brewer
Publisher: John Wiley & Sons
ISBN: 1118211626
Category : Technology & Engineering
Languages : en
Pages : 766

Get Book Here

Book Description
Presented here is an all-inclusive treatment of Flash technology, including Flash memory chips, Flash embedded in logic, binary cell Flash, and multilevel cell Flash. The book begins with a tutorial of elementary concepts to orient readers who are less familiar with the subject. Next, it covers all aspects and variations of Flash technology at a mature engineering level: basic device structures, principles of operation, related process technologies, circuit design, overall design tradeoffs, device testing, reliability, and applications.

Nonvolatile Memory Technologies with Emphasis on Flash

Nonvolatile Memory Technologies with Emphasis on Flash PDF Author: Joe Brewer
Publisher: John Wiley & Sons
ISBN: 1118211626
Category : Technology & Engineering
Languages : en
Pages : 766

Get Book Here

Book Description
Presented here is an all-inclusive treatment of Flash technology, including Flash memory chips, Flash embedded in logic, binary cell Flash, and multilevel cell Flash. The book begins with a tutorial of elementary concepts to orient readers who are less familiar with the subject. Next, it covers all aspects and variations of Flash technology at a mature engineering level: basic device structures, principles of operation, related process technologies, circuit design, overall design tradeoffs, device testing, reliability, and applications.

Nonvolatile Memory Design

Nonvolatile Memory Design PDF Author: Hai Li
Publisher: CRC Press
ISBN: 1351834193
Category : Computers
Languages : en
Pages : 207

Get Book Here

Book Description
The manufacture of flash memory, which is the dominant nonvolatile memory technology, is facing severe technical barriers. So much so, that some emerging technologies have been proposed as alternatives to flash memory in the nano-regime. Nonvolatile Memory Design: Magnetic, Resistive, and Phase Changing introduces three promising candidates: phase-change memory, magnetic random access memory, and resistive random access memory. The text illustrates the fundamental storage mechanism of these technologies and examines their differences from flash memory techniques. Based on the latest advances, the authors discuss key design methodologies as well as the various functions and capabilities of the three nonvolatile memory technologies.

Advances in Non-volatile Memory and Storage Technology

Advances in Non-volatile Memory and Storage Technology PDF Author: Yoshio Nishi
Publisher: Elsevier
ISBN: 0857098098
Category : Computers
Languages : en
Pages : 456

Get Book Here

Book Description
New solutions are needed for future scaling down of nonvolatile memory. Advances in Non-volatile Memory and Storage Technology provides an overview of developing technologies and explores their strengths and weaknesses. After an overview of the current market, part one introduces improvements in flash technologies, including developments in 3D NAND flash technologies and flash memory for ultra-high density storage devices. Part two looks at the advantages of designing phase change memory and resistive random access memory technologies. It looks in particular at the fabrication, properties, and performance of nanowire phase change memory technologies. Later chapters also consider modeling of both metal oxide and resistive random access memory switching mechanisms, as well as conductive bridge random access memory technologies. Finally, part three looks to the future of alternative technologies. The areas covered include molecular, polymer, and hybrid organic memory devices, and a variety of random access memory devices such as nano-electromechanical, ferroelectric, and spin-transfer-torque magnetoresistive devices. Advances in Non-volatile Memory and Storage Technology is a key resource for postgraduate students and academic researchers in physics, materials science, and electrical engineering. It is a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials, and portable electronic devices. - Provides an overview of developing nonvolatile memory and storage technologies and explores their strengths and weaknesses - Examines improvements to flash technology, charge trapping, and resistive random access memory - Discusses emerging devices such as those based on polymer and molecular electronics, and nanoelectromechanical random access memory (RAM)

Emerging Memory Technologies

Emerging Memory Technologies PDF Author: Yuan Xie
Publisher: Springer Science & Business Media
ISBN: 144199551X
Category : Technology & Engineering
Languages : en
Pages : 321

Get Book Here

Book Description
This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of Flash memory, they are very attractive as the basis for future universal memories. This book provides a holistic perspective on the topic, covering modeling, design, architecture and applications. The practical information included in this book will enable designers to exploit emerging memory technologies to improve significantly the performance/power/reliability of future, mainstream integrated circuits.

Nonvolatile Memories

Nonvolatile Memories PDF Author: Tseung-Yuen Tseng
Publisher:
ISBN: 9781588832504
Category : Flash memories (Computers)
Languages : en
Pages :

Get Book Here

Book Description


Embedded Flash Memory for Embedded Systems: Technology, Design for Sub-systems, and Innovations

Embedded Flash Memory for Embedded Systems: Technology, Design for Sub-systems, and Innovations PDF Author: Hideto Hidaka
Publisher: Springer
ISBN: 3319553062
Category : Technology & Engineering
Languages : en
Pages : 253

Get Book Here

Book Description
This book provides a comprehensive introduction to embedded flash memory, describing the history, current status, and future projections for technology, circuits, and systems applications. The authors describe current main-stream embedded flash technologies from floating-gate 1Tr, floating-gate with split-gate (1.5Tr), and 1Tr/1.5Tr SONOS flash technologies and their successful creation of various applications. Comparisons of these embedded flash technologies and future projections are also provided. The authors demonstrate a variety of embedded applications for auto-motive, smart-IC cards, and low-power, representing the leading-edge technology developments for eFlash. The discussion also includes insights into future prospects of application-driven non-volatile memory technology in the era of smart advanced automotive system, such as ADAS (Advanced Driver Assistance System) and IoE (Internet of Everything). Trials on technology convergence and future prospects of embedded non-volatile memory in the new memory hierarchy are also described. Introduces the history of embedded flash memory technology for micro-controller products and how embedded flash innovations developed; Includes comprehensive and detailed descriptions of current main-stream embedded flash memory technologies, sub-system designs and applications; Explains why embedded flash memory requirements are different from those of stand-alone flash memory and how to achieve specific goals with technology development and circuit designs; Describes a mature and stable floating-gate 1Tr cell technology imported from stand-alone flash memory products - that then introduces embedded-specific split-gate memory cell technologies based on floating-gate storage structure and charge-trapping SONOS technology and their eFlash sub-system designs; Describes automotive and smart-IC card applications requirements and achievements in advanced eFlash beyond 4 0nm node.

Semiconductor Memories

Semiconductor Memories PDF Author: Ashok K. Sharma
Publisher: Wiley-IEEE Press
ISBN: 9780780310001
Category : Technology & Engineering
Languages : en
Pages : 480

Get Book Here

Book Description
Semiconductor Memories provides in-depth coverage in the areas of design for testing, fault tolerance, failure modes and mechanisms, and screening and qualification methods including. * Memory cell structures and fabrication technologies. * Application-specific memories and architectures. * Memory design, fault modeling and test algorithms, limitations, and trade-offs. * Space environment, radiation hardening process and design techniques, and radiation testing. * Memory stacks and multichip modules for gigabyte storage.

Emerging Non-volatile Memory Technologies

Emerging Non-volatile Memory Technologies PDF Author: Wen Siang Lew
Publisher: Springer Nature
ISBN: 9811569126
Category : Science
Languages : en
Pages : 439

Get Book Here

Book Description
This book offers a balanced and comprehensive guide to the core principles, fundamental properties, experimental approaches, and state-of-the-art applications of two major groups of emerging non-volatile memory technologies, i.e. spintronics-based devices as well as resistive switching devices, also known as Resistive Random Access Memory (RRAM). The first section presents different types of spintronic-based devices, i.e. magnetic tunnel junction (MTJ), domain wall, and skyrmion memory devices. This section describes how their developments have led to various promising applications, such as microwave oscillators, detectors, magnetic logic, and neuromorphic engineered systems. In the second half of the book, the underlying device physics supported by different experimental observations and modelling of RRAM devices are presented with memory array level implementation. An insight into RRAM desired properties as synaptic element in neuromorphic computing platforms from material and algorithms viewpoint is also discussed with specific example in automatic sound classification framework.

Nonvolatile Semiconductor Memory Technology

Nonvolatile Semiconductor Memory Technology PDF Author: William D. Brown
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 624

Get Book Here

Book Description
This comprehensive reference book provides electronics engineers with the technical data and perspective necessary for the intelligent selection, specification, and application of nonvolatile semiconductor memory devices. A "one-stop shopping" tool for the working engineer, this book presents the fundamental aspects of nonvolatile semiconductor memory technologies, devices, reliability, and applications.

Flash Memories

Flash Memories PDF Author: Paulo Cappelletti
Publisher: Springer Science & Business Media
ISBN: 1461550157
Category : Technology & Engineering
Languages : en
Pages : 544

Get Book Here

Book Description
A Flash memory is a Non Volatile Memory (NVM) whose "unit cells" are fabricated in CMOS technology and programmed and erased electrically. In 1971, Frohman-Bentchkowsky developed a folating polysilicon gate tran sistor [1, 2], in which hot electrons were injected in the floating gate and removed by either Ultra-Violet (UV) internal photoemission or by Fowler Nordheim tunneling. This is the "unit cell" of EPROM (Electrically Pro grammable Read Only Memory), which, consisting of a single transistor, can be very densely integrated. EPROM memories are electrically programmed and erased by UV exposure for 20-30 mins. In the late 1970s, there have been many efforts to develop an electrically erasable EPROM, which resulted in EEPROMs (Electrically Erasable Programmable ROMs). EEPROMs use hot electron tunneling for program and Fowler-Nordheim tunneling for erase. The EEPROM cell consists of two transistors and a tunnel oxide, thus it is two or three times the size of an EPROM. Successively, the combination of hot carrier programming and tunnel erase was rediscovered to achieve a single transistor EEPROM, called Flash EEPROM. The first cell based on this concept has been presented in 1979 [3]; the first commercial product, a 256K memory chip, has been presented by Toshiba in 1984 [4]. The market did not take off until this technology was proven to be reliable and manufacturable [5].