Nonstandard Finite Difference Models of Differential Equations

Nonstandard Finite Difference Models of Differential Equations PDF Author: Ronald E. Mickens
Publisher: World Scientific
ISBN: 9810214588
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.

Nonstandard Finite Difference Models of Differential Equations

Nonstandard Finite Difference Models of Differential Equations PDF Author: Ronald E. Mickens
Publisher: World Scientific
ISBN: 9810214588
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.

Nonstandard Finite Difference Schemes: Methodology And Applications

Nonstandard Finite Difference Schemes: Methodology And Applications PDF Author: Ronald E Mickens
Publisher: World Scientific
ISBN: 981122255X
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
This second edition of Nonstandard Finite Difference Models of Differential Equations provides an update on the progress made in both the theory and application of the NSFD methodology during the past two and a half decades. In addition to discussing details related to the determination of the denominator functions and the nonlocal discrete representations of functions of dependent variables, we include many examples illustrating just how this should be done.Of real value to the reader is the inclusion of a chapter listing many exact difference schemes, and a chapter giving NSFD schemes from the research literature. The book emphasizes the critical roles played by the 'principle of dynamic consistency' and the use of sub-equations for the construction of valid NSFD discretizations of differential equations.

Applications of Nonstandard Finite Difference Schemes

Applications of Nonstandard Finite Difference Schemes PDF Author: Ronald E. Mickens
Publisher: World Scientific
ISBN: 9789810241339
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
The main purpose of this book is to provide a concise introduction to the methods and philosophy of constructing nonstandard finite difference schemes and illustrate how such techniques can be applied to several important problems. Chapter I gives an overview of the subject and summarizes previous work. Chapters 2 and 3 consider in detail the construction and numerical implementation of schemes for physical problems involving convection-diffusion-reaction equations, that arise in groundwater pollution and scattering of electromagnetic waves using Maxwell's equations. Chapter 4 examines certain mathematical issues related to the nonstandard discretization of competitive and cooperative models for ecology. The application chapters illustrate well the power of nonstandard methods. In particular, for the same accuracy as obtained by standard techniques, larger step sizes can be used. This volume will satisfy the needs of scientists, engineers, and mathematicians who wish to know how to construct nonstandard schemes and see how these are applied to obtain numerical solutions of the differential equations which arise in the study of nonlinear dynamical systems modeling important physical phenomena.

Mathematical Modelling and Nonstandard Schemes for the Corona Virus Pandemic

Mathematical Modelling and Nonstandard Schemes for the Corona Virus Pandemic PDF Author: Sarah Marie Treibert
Publisher: Springer Nature
ISBN: 3658359323
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
This book deals with the prediction of possible future scenarios concerning the COVID-19 pandemic. Based on the well-known SIR model by Kermack and McKendrick a compartment model is established. This model comprises its own assumptions, transition rates and transmission dynamics, as well as a corresponding system of ordinary differential equations. Making use of numerical methods and a nonstandard-finite-difference scheme, two submodels are implemented in Matlab in order to make parameter estimations and compare different scenarios with each other.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations PDF Author: Sören Bartels
Publisher: Springer
ISBN: 3319323547
Category : Mathematics
Languages : en
Pages : 541

Get Book Here

Book Description
Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.

Chebyshev and Fourier Spectral Methods

Chebyshev and Fourier Spectral Methods PDF Author: John P. Boyd
Publisher: Courier Corporation
ISBN: 0486411834
Category : Mathematics
Languages : en
Pages : 690

Get Book Here

Book Description
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

TEXTBOOK OF FINITE ELEMENT ANALYSIS

TEXTBOOK OF FINITE ELEMENT ANALYSIS PDF Author: P. SESHU
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120323157
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Designed for a one-semester course in Finite Element Method, this compact and well-organized text presents FEM as a tool to find approximate solutions to differential equations. This provides the student a better perspective on the technique and its wide range of applications. This approach reflects the current trend as the present-day applications range from structures to biomechanics to electromagnetics, unlike in conventional texts that view FEM primarily as an extension of matrix methods of structural analysis. After an introduction and a review of mathematical preliminaries, the book gives a detailed discussion on FEM as a technique for solving differential equations and variational formulation of FEM. This is followed by a lucid presentation of one-dimensional and two-dimensional finite elements and finite element formulation for dynamics. The book concludes with some case studies that focus on industrial problems and Appendices that include mini-project topics based on near-real-life problems. Postgraduate/Senior undergraduate students of civil, mechanical and aeronautical engineering will find this text extremely useful; it will also appeal to the practising engineers and the teaching community.

Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations PDF Author: Sandip Mazumder
Publisher: Academic Press
ISBN: 0128035048
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. - Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry - Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes - Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives