Author: Abraham Berman
Publisher: Academic Press
ISBN: 1483260860
Category : Mathematics
Languages : en
Pages : 337
Book Description
Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.
Nonnegative Matrices in the Mathematical Sciences
Author: Abraham Berman
Publisher: Academic Press
ISBN: 1483260860
Category : Mathematics
Languages : en
Pages : 337
Book Description
Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.
Publisher: Academic Press
ISBN: 1483260860
Category : Mathematics
Languages : en
Pages : 337
Book Description
Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.
Matrix Iterative Analysis
Author: Richard S Varga
Publisher: Springer Science & Business Media
ISBN: 3642051561
Category : Mathematics
Languages : en
Pages : 363
Book Description
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.
Publisher: Springer Science & Business Media
ISBN: 3642051561
Category : Mathematics
Languages : en
Pages : 363
Book Description
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.
Nonnegative Matrices, Positive Operators, And Applications
Author: Aihui Zhou
Publisher: World Scientific Publishing Company
ISBN: 981310743X
Category : Mathematics
Languages : en
Pages : 362
Book Description
Nonnegative matrices and positive operators are widely applied in science, engineering, and technology. This book provides the basic theory and several typical modern science and engineering applications of nonnegative matrices and positive operators, including the fundamental theory, methods, numerical analysis, and applications in the Google search engine, computational molecular dynamics, and wireless communications.Unique features of this book include the combination of the theories of nonnegative matrices and positive operators as well as the emphasis on applications of nonnegative matrices in the numerical analysis of positive operators, such as Markov operators and Frobenius-Perron operators both of which play key roles in the statistical and stochastic studies of dynamical systems.It can be used as a textbook for an upper level undergraduate or beginning graduate course in advanced matrix theory and/or positive operators as well as for an advanced topics course in operator theory or ergodic theory. In addition, it serves as a good reference for researchers in mathematical sciences, physical sciences, and engineering.
Publisher: World Scientific Publishing Company
ISBN: 981310743X
Category : Mathematics
Languages : en
Pages : 362
Book Description
Nonnegative matrices and positive operators are widely applied in science, engineering, and technology. This book provides the basic theory and several typical modern science and engineering applications of nonnegative matrices and positive operators, including the fundamental theory, methods, numerical analysis, and applications in the Google search engine, computational molecular dynamics, and wireless communications.Unique features of this book include the combination of the theories of nonnegative matrices and positive operators as well as the emphasis on applications of nonnegative matrices in the numerical analysis of positive operators, such as Markov operators and Frobenius-Perron operators both of which play key roles in the statistical and stochastic studies of dynamical systems.It can be used as a textbook for an upper level undergraduate or beginning graduate course in advanced matrix theory and/or positive operators as well as for an advanced topics course in operator theory or ergodic theory. In addition, it serves as a good reference for researchers in mathematical sciences, physical sciences, and engineering.
Nonnegative Matrices and Applications
Author: R. B. Bapat
Publisher: Cambridge University Press
ISBN: 0521571677
Category : Mathematics
Languages : en
Pages : 351
Book Description
This book provides an integrated treatment of the theory of nonnegative matrices (matrices with only positive numbers or zero as entries) and some related classes of positive matrices, concentrating on connections with game theory, combinatorics, inequalities, optimisation and mathematical economics. The wide variety of applications, which include price fixing, scheduling and the fair division problem, have been carefully chosen both for their elegant mathematical content and for their accessibility to students with minimal preparation. Many results in matrix theory are also presented. The treatment is rigorous and almost all results are proved completely. These results and applications will be of great interest to researchers in linear programming, statistics and operations research. The minimal prerequisites also make the book accessible to first-year graduate students.
Publisher: Cambridge University Press
ISBN: 0521571677
Category : Mathematics
Languages : en
Pages : 351
Book Description
This book provides an integrated treatment of the theory of nonnegative matrices (matrices with only positive numbers or zero as entries) and some related classes of positive matrices, concentrating on connections with game theory, combinatorics, inequalities, optimisation and mathematical economics. The wide variety of applications, which include price fixing, scheduling and the fair division problem, have been carefully chosen both for their elegant mathematical content and for their accessibility to students with minimal preparation. Many results in matrix theory are also presented. The treatment is rigorous and almost all results are proved completely. These results and applications will be of great interest to researchers in linear programming, statistics and operations research. The minimal prerequisites also make the book accessible to first-year graduate students.
Non-negative Matrices and Markov Chains
Author: E. Seneta
Publisher: Springer Science & Business Media
ISBN: 0387327924
Category : Mathematics
Languages : en
Pages : 295
Book Description
Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or another branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book is to relate several aspects of the theory, insofar as this is possible. The author hopes that the book will be useful to mathematicians; but in particular to the workers in applied fields, so the mathematics has been kept as simple as could be managed. The mathematical requisites for reading it are: some knowledge of real-variable theory, and matrix theory; and a little knowledge of complex-variable; the emphasis is on real-variable methods. (There is only one part of the book, the second part of 55.5, which is of rather specialist interest, and requires deeper knowledge.) Appendices provide brief expositions of those areas of mathematics needed which may be less g- erally known to the average reader.
Publisher: Springer Science & Business Media
ISBN: 0387327924
Category : Mathematics
Languages : en
Pages : 295
Book Description
Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or another branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book is to relate several aspects of the theory, insofar as this is possible. The author hopes that the book will be useful to mathematicians; but in particular to the workers in applied fields, so the mathematics has been kept as simple as could be managed. The mathematical requisites for reading it are: some knowledge of real-variable theory, and matrix theory; and a little knowledge of complex-variable; the emphasis is on real-variable methods. (There is only one part of the book, the second part of 55.5, which is of rather specialist interest, and requires deeper knowledge.) Appendices provide brief expositions of those areas of mathematics needed which may be less g- erally known to the average reader.
Totally Nonnegative Matrices
Author: Shaun M. Fallat
Publisher: Princeton University Press
ISBN: 1400839017
Category : Mathematics
Languages : en
Pages : 265
Book Description
Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references.
Publisher: Princeton University Press
ISBN: 1400839017
Category : Mathematics
Languages : en
Pages : 265
Book Description
Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references.
Matrix Theory
Author: Fuzhen Zhang
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Matrix Theory: A Second Course
Author: James M. Ortega
Publisher: Springer Science & Business Media
ISBN: 1489904719
Category : Mathematics
Languages : en
Pages : 269
Book Description
Linear algebra and matrix theory are essentially synonymous terms for an area of mathematics that has become one of the most useful and pervasive tools in a wide range of disciplines. It is also a subject of great mathematical beauty. In consequence of both of these facts, linear algebra has increasingly been brought into lower levels of the curriculum, either in conjunction with the calculus or separate from it but at the same level. A large and still growing number of textbooks has been written to satisfy this need, aimed at students at the junior, sophomore, or even freshman levels. Thus, most students now obtaining a bachelor's degree in the sciences or engineering have had some exposure to linear algebra. But rarely, even when solid courses are taken at the junior or senior levels, do these students have an adequate working knowledge of the subject to be useful in graduate work or in research and development activities in government and industry. In particular, most elementary courses stop at the point of canonical forms, so that while the student may have "seen" the Jordan and other canonical forms, there is usually little appreciation of their usefulness. And there is almost never time in the elementary courses to deal with more specialized topics like nonnegative matrices, inertia theorems, and so on. In consequence, many graduate courses in mathematics, applied mathe matics, or applications develop certain parts of matrix theory as needed.
Publisher: Springer Science & Business Media
ISBN: 1489904719
Category : Mathematics
Languages : en
Pages : 269
Book Description
Linear algebra and matrix theory are essentially synonymous terms for an area of mathematics that has become one of the most useful and pervasive tools in a wide range of disciplines. It is also a subject of great mathematical beauty. In consequence of both of these facts, linear algebra has increasingly been brought into lower levels of the curriculum, either in conjunction with the calculus or separate from it but at the same level. A large and still growing number of textbooks has been written to satisfy this need, aimed at students at the junior, sophomore, or even freshman levels. Thus, most students now obtaining a bachelor's degree in the sciences or engineering have had some exposure to linear algebra. But rarely, even when solid courses are taken at the junior or senior levels, do these students have an adequate working knowledge of the subject to be useful in graduate work or in research and development activities in government and industry. In particular, most elementary courses stop at the point of canonical forms, so that while the student may have "seen" the Jordan and other canonical forms, there is usually little appreciation of their usefulness. And there is almost never time in the elementary courses to deal with more specialized topics like nonnegative matrices, inertia theorems, and so on. In consequence, many graduate courses in mathematics, applied mathe matics, or applications develop certain parts of matrix theory as needed.
Applied Matrix Algebra in the Statistical Sciences
Author: Alexander Basilevsky
Publisher: Courier Corporation
ISBN: 0486153371
Category : Mathematics
Languages : en
Pages : 412
Book Description
This comprehensive text offers teachings relevant to both applied and theoretical branches of matrix algebra and provides a bridge between linear algebra and statistical models. Appropriate for advanced undergraduate and graduate students. 1983 edition.
Publisher: Courier Corporation
ISBN: 0486153371
Category : Mathematics
Languages : en
Pages : 412
Book Description
This comprehensive text offers teachings relevant to both applied and theoretical branches of matrix algebra and provides a bridge between linear algebra and statistical models. Appropriate for advanced undergraduate and graduate students. 1983 edition.
Linear Algebra in Action
Author: Harry Dym
Publisher: American Mathematical Society
ISBN: 1470472066
Category : Mathematics
Languages : en
Pages : 512
Book Description
This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed. This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized.
Publisher: American Mathematical Society
ISBN: 1470472066
Category : Mathematics
Languages : en
Pages : 512
Book Description
This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed. This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized.