Author: Shanmuganathan Rajasekar
Publisher: Springer
ISBN: 3319248863
Category : Science
Languages : en
Pages : 417
Book Description
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques involved in numerical simulations. Though primarily intended for graduate students, it can also be considered a reference book for any researcher interested in the dynamics of resonant phenomena.
Nonlinear Resonances
Author: Shanmuganathan Rajasekar
Publisher: Springer
ISBN: 3319248863
Category : Science
Languages : en
Pages : 417
Book Description
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques involved in numerical simulations. Though primarily intended for graduate students, it can also be considered a reference book for any researcher interested in the dynamics of resonant phenomena.
Publisher: Springer
ISBN: 3319248863
Category : Science
Languages : en
Pages : 417
Book Description
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques involved in numerical simulations. Though primarily intended for graduate students, it can also be considered a reference book for any researcher interested in the dynamics of resonant phenomena.
Nonlinear Resonance Analysis
Author: Elena Kartashova
Publisher: Cambridge University Press
ISBN: 1139493086
Category : Science
Languages : en
Pages : 241
Book Description
Nonlinear resonance analysis is a unique mathematical tool that can be used to study resonances in relation to, but independently of, any single area of application. This is the first book to present the theory of nonlinear resonances as a new scientific field, with its own theory, computational methods, applications and open questions. The book includes several worked examples, mostly taken from fluid dynamics, to explain the concepts discussed. Each chapter demonstrates how nonlinear resonance analysis can be applied to real systems, including large-scale phenomena in the Earth's atmosphere and novel wave turbulent regimes, and explains a range of laboratory experiments. The book also contains a detailed description of the latest computer software in the field. It is suitable for graduate students and researchers in nonlinear science and wave turbulence, along with fluid mechanics and number theory. Colour versions of a selection of the figures are available at www.cambridge.org/9780521763608.
Publisher: Cambridge University Press
ISBN: 1139493086
Category : Science
Languages : en
Pages : 241
Book Description
Nonlinear resonance analysis is a unique mathematical tool that can be used to study resonances in relation to, but independently of, any single area of application. This is the first book to present the theory of nonlinear resonances as a new scientific field, with its own theory, computational methods, applications and open questions. The book includes several worked examples, mostly taken from fluid dynamics, to explain the concepts discussed. Each chapter demonstrates how nonlinear resonance analysis can be applied to real systems, including large-scale phenomena in the Earth's atmosphere and novel wave turbulent regimes, and explains a range of laboratory experiments. The book also contains a detailed description of the latest computer software in the field. It is suitable for graduate students and researchers in nonlinear science and wave turbulence, along with fluid mechanics and number theory. Colour versions of a selection of the figures are available at www.cambridge.org/9780521763608.
The Mechanics Of Nonlinear Systems With Internal Resonances
Author: Leonid Manevitch
Publisher: World Scientific
ISBN: 1783260440
Category : Science
Languages : en
Pages : 276
Book Description
One of the most important features of nonlinear systems with several degrees of freedom is the presence of internal resonances at certain relations between natural frequencies of different modes. This monograph is the first book devoted predominantly to internal resonances in different mechanical systems including those of practical importance.The main purpose is to consider the internal resonances from the general point of view and to elucidate their role in applied nonlinear dynamics by using an efficient approach based on introducing the complex representation of equations of motion (together with the multiple scale method). Considered here are autonomous and nonautonomous discrete two-degree-of-freedom systems, infinite chains of particles, and continuous systems, including circular rings and cylindrical shells. Specific attention is paid to the case of one-to-one internal resonance in systems with cubic nonlinearities. Steady-state and nonstationary regimes of motion, interaction of the internal and external resonances at forced oscillations, and bifurcations of steady-state modes and their stability are systematically studied./a
Publisher: World Scientific
ISBN: 1783260440
Category : Science
Languages : en
Pages : 276
Book Description
One of the most important features of nonlinear systems with several degrees of freedom is the presence of internal resonances at certain relations between natural frequencies of different modes. This monograph is the first book devoted predominantly to internal resonances in different mechanical systems including those of practical importance.The main purpose is to consider the internal resonances from the general point of view and to elucidate their role in applied nonlinear dynamics by using an efficient approach based on introducing the complex representation of equations of motion (together with the multiple scale method). Considered here are autonomous and nonautonomous discrete two-degree-of-freedom systems, infinite chains of particles, and continuous systems, including circular rings and cylindrical shells. Specific attention is paid to the case of one-to-one internal resonance in systems with cubic nonlinearities. Steady-state and nonstationary regimes of motion, interaction of the internal and external resonances at forced oscillations, and bifurcations of steady-state modes and their stability are systematically studied./a
Linear and Nonlinear Rotordynamics
Author: Yukio Ishida
Publisher: John Wiley & Sons
ISBN: 3527651918
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
A wide-ranging treatment of fundamental rotordynamics in order to serve engineers with the necessary knowledge to eliminate various vibration problems. New to this edition are three chapters on highly significant topics: Vibration Suppression - The chapter presents various methods and is a helpful guidance for professional engineers. Magnetic Bearings - The chapter provides fundamental knowledge and enables the reader to realize simple magnetic bearings in the laboratory. Some Practical Rotor Systems - The chapter explains various vibration characteristics of steam turbines and wind turbines. The contents of other chapters on Balancing, Vibrations due to Mechanical Elements, and Cracked Rotors are added to and revised extensively. The authors provide a classification of rotating shaft systems and general coverage of key ideas common to all branches of rotordynamics. They offers a unique analysis of dynamical problems, such as nonlinear rotordynamics, self-excited vibration, nonstationary vibration, and flow-induced oscillations. Nonlinear resonances are discussed in detail, as well as methods for shaft stability and various theoretical derivations and computational methods for analyzing rotors to determine and correct vibrations. This edition also includes case studies and problems.
Publisher: John Wiley & Sons
ISBN: 3527651918
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
A wide-ranging treatment of fundamental rotordynamics in order to serve engineers with the necessary knowledge to eliminate various vibration problems. New to this edition are three chapters on highly significant topics: Vibration Suppression - The chapter presents various methods and is a helpful guidance for professional engineers. Magnetic Bearings - The chapter provides fundamental knowledge and enables the reader to realize simple magnetic bearings in the laboratory. Some Practical Rotor Systems - The chapter explains various vibration characteristics of steam turbines and wind turbines. The contents of other chapters on Balancing, Vibrations due to Mechanical Elements, and Cracked Rotors are added to and revised extensively. The authors provide a classification of rotating shaft systems and general coverage of key ideas common to all branches of rotordynamics. They offers a unique analysis of dynamical problems, such as nonlinear rotordynamics, self-excited vibration, nonstationary vibration, and flow-induced oscillations. Nonlinear resonances are discussed in detail, as well as methods for shaft stability and various theoretical derivations and computational methods for analyzing rotors to determine and correct vibrations. This edition also includes case studies and problems.
Normal Modes and Localization in Nonlinear Systems
Author: Alexander F. Vakakis
Publisher: John Wiley & Sons
ISBN: 3527617876
Category : Science
Languages : en
Pages : 552
Book Description
This landmark book deals with nonlinear normal modes (NNMs) and nonlinear mode localization. Offers an analysis which enables the study of various nonlinear phenomena having no counterpart in linear theory. On a more theoretical level, the concept of NNMs will be shown to provide an excellent framework for understanding a variety of distinctively nonlinear phenomena such as mode bifurcations and standing or traveling solitary waves.
Publisher: John Wiley & Sons
ISBN: 3527617876
Category : Science
Languages : en
Pages : 552
Book Description
This landmark book deals with nonlinear normal modes (NNMs) and nonlinear mode localization. Offers an analysis which enables the study of various nonlinear phenomena having no counterpart in linear theory. On a more theoretical level, the concept of NNMs will be shown to provide an excellent framework for understanding a variety of distinctively nonlinear phenomena such as mode bifurcations and standing or traveling solitary waves.
Proceedings
Author:
Publisher:
ISBN:
Category : Nuclear physics
Languages : en
Pages : 802
Book Description
Publisher:
ISBN:
Category : Nuclear physics
Languages : en
Pages : 802
Book Description
The Transition to Chaos
Author: Linda Reichl
Publisher: Springer Science & Business Media
ISBN: 1475743505
Category : Science
Languages : en
Pages : 692
Book Description
Based on courses given at the universities of Texas and California, this book treats an active field of research that touches upon the foundations of physics and chemistry. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature; while problems at the ends of chapters help students clarify their understanding. This new edition has an updated presentation throughout, and a new chapter on open quantum systems.
Publisher: Springer Science & Business Media
ISBN: 1475743505
Category : Science
Languages : en
Pages : 692
Book Description
Based on courses given at the universities of Texas and California, this book treats an active field of research that touches upon the foundations of physics and chemistry. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature; while problems at the ends of chapters help students clarify their understanding. This new edition has an updated presentation throughout, and a new chapter on open quantum systems.
Holographic Recording Materials
Author: H.M. Smith
Publisher: Springer Science & Business Media
ISBN: 354037325X
Category : Science
Languages : en
Pages : 263
Book Description
With contributions by numerous experts
Publisher: Springer Science & Business Media
ISBN: 354037325X
Category : Science
Languages : en
Pages : 263
Book Description
With contributions by numerous experts
Stability of Gyroscopic Systems
Author: Ard‚shir Guran
Publisher: World Scientific
ISBN: 9810226306
Category : Science
Languages : en
Pages : 438
Book Description
The motion of mechanical systems undergoing rotation about a fixed axis has been the subject of extensive studies over a few centuries. These systems are generally subject to gyroscopic forces which are associated with coriolis accelerations or mass transport and render complex dynamics.The unifying theme among topics presented in this book is the gyroscopic nature of the system equations of motion. The book represents comprehensive and detailed reviews of the state of art in four diverse application areas: flow-induced oscillations in structures, oscillations in rotating systems or rotor dynamics, dynamics of axially moving material systems, and dynamics of gyroelastic systems. The book also includes a chapter on dynamics of repetitive structures. These systems feature spatial periodicity and are generally subject to considerable gyroscopic forces. ?Gyroelastic systems? and ?repetitive structures? are the topics with very recent origins and are still in their infancies compared to the other examples represented in this book. Thus, the contributions on gyroelastic systems and repetitive structures are limited to only modeling, localization and linear stability analysis results.This book covers many important aspects of recent developments in various types of gyroscopic systems. Thus, at last, a comprehensive book is made available to serve as a supplement and resource for any graduate level course on elastic gyroscopic systems, as well as for a course covering the stability of mechanical systems. Moreover, the inclusion of an up-to-date bibliography attached to each chapter will make this book an invaluable text for professional reference.
Publisher: World Scientific
ISBN: 9810226306
Category : Science
Languages : en
Pages : 438
Book Description
The motion of mechanical systems undergoing rotation about a fixed axis has been the subject of extensive studies over a few centuries. These systems are generally subject to gyroscopic forces which are associated with coriolis accelerations or mass transport and render complex dynamics.The unifying theme among topics presented in this book is the gyroscopic nature of the system equations of motion. The book represents comprehensive and detailed reviews of the state of art in four diverse application areas: flow-induced oscillations in structures, oscillations in rotating systems or rotor dynamics, dynamics of axially moving material systems, and dynamics of gyroelastic systems. The book also includes a chapter on dynamics of repetitive structures. These systems feature spatial periodicity and are generally subject to considerable gyroscopic forces. ?Gyroelastic systems? and ?repetitive structures? are the topics with very recent origins and are still in their infancies compared to the other examples represented in this book. Thus, the contributions on gyroelastic systems and repetitive structures are limited to only modeling, localization and linear stability analysis results.This book covers many important aspects of recent developments in various types of gyroscopic systems. Thus, at last, a comprehensive book is made available to serve as a supplement and resource for any graduate level course on elastic gyroscopic systems, as well as for a course covering the stability of mechanical systems. Moreover, the inclusion of an up-to-date bibliography attached to each chapter will make this book an invaluable text for professional reference.
Ultrashort Light Pulses
Author: S.L. Shapiro
Publisher: Springer Science & Business Media
ISBN: 3662225743
Category : Science
Languages : en
Pages : 397
Book Description
Soon after the invention of the laser, a brand-new area of endeavour emerged after the discovery that powerful ultrashort (picosecond) light pulses could be extracted from some lasers. Chemists, physicists, and engineers quickly recognized that such pulses would allow direct temporal studies of extremely rapid phenomena requiring, however, development of revolutionary ultrafast optical and electronic devices. For basic research the development of picosecond pulses was highly important because experimentalists were now able to measure directly the motions of atoms and molecules in liquids and solids: by disrupting a material from equilibrium with an intense picosecond pulse and then recording the time of return to the equilibrium state by picosecond techniques. Studies of picosecond laser pulses-their generation and diagnostic tech niques-are still undergoing a fairly rapid expansion, but a critical review of the state of the art by experienced workers in the field may be a timely help to new experimentalists. We shall review the sophisticated tools developed in the last ten years, including the modelocked picosecond-pulse-emitting lasers, the picosecond detection techniques, and picosecond devices. Moreover, we shall outline the basic foundations for the study of rapid events in chemistry and physics, which have emerged after many interesting experiments and which are now being applied in biology. An in-depth coverage of various aspects of the picosecond field should be helpful to scientists and engineers alike.
Publisher: Springer Science & Business Media
ISBN: 3662225743
Category : Science
Languages : en
Pages : 397
Book Description
Soon after the invention of the laser, a brand-new area of endeavour emerged after the discovery that powerful ultrashort (picosecond) light pulses could be extracted from some lasers. Chemists, physicists, and engineers quickly recognized that such pulses would allow direct temporal studies of extremely rapid phenomena requiring, however, development of revolutionary ultrafast optical and electronic devices. For basic research the development of picosecond pulses was highly important because experimentalists were now able to measure directly the motions of atoms and molecules in liquids and solids: by disrupting a material from equilibrium with an intense picosecond pulse and then recording the time of return to the equilibrium state by picosecond techniques. Studies of picosecond laser pulses-their generation and diagnostic tech niques-are still undergoing a fairly rapid expansion, but a critical review of the state of the art by experienced workers in the field may be a timely help to new experimentalists. We shall review the sophisticated tools developed in the last ten years, including the modelocked picosecond-pulse-emitting lasers, the picosecond detection techniques, and picosecond devices. Moreover, we shall outline the basic foundations for the study of rapid events in chemistry and physics, which have emerged after many interesting experiments and which are now being applied in biology. An in-depth coverage of various aspects of the picosecond field should be helpful to scientists and engineers alike.