Author: R. Russell Rhinehart
Publisher: John Wiley & Sons
ISBN: 1118597966
Category : Mathematics
Languages : en
Pages : 402
Book Description
Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications related to diagnosis, design, and optimization. First, we postulate a mechanism, then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Patterns in the residuals can guide model improvement. Alternately, when the model fits the data, our understanding is sufficient and confidently functional for engineering applications. This book details methods of nonlinear regression, computational algorithms,model validation, interpretation of residuals, and useful experimental design. The focus is on practical applications, with relevant methods supported by fundamental analysis. This book will assist either the academic or industrial practitioner to properly classify the system, choose between the various available modeling options and regression objectives, design experiments to obtain data capturing critical system behaviors, fit the model parameters based on that data, and statistically characterize the resulting model. The author has used the material in the undergraduate unit operations lab course and in advanced control applications.
Nonlinear Regression Modeling for Engineering Applications
Author: R. Russell Rhinehart
Publisher: John Wiley & Sons
ISBN: 1118597966
Category : Mathematics
Languages : en
Pages : 402
Book Description
Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications related to diagnosis, design, and optimization. First, we postulate a mechanism, then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Patterns in the residuals can guide model improvement. Alternately, when the model fits the data, our understanding is sufficient and confidently functional for engineering applications. This book details methods of nonlinear regression, computational algorithms,model validation, interpretation of residuals, and useful experimental design. The focus is on practical applications, with relevant methods supported by fundamental analysis. This book will assist either the academic or industrial practitioner to properly classify the system, choose between the various available modeling options and regression objectives, design experiments to obtain data capturing critical system behaviors, fit the model parameters based on that data, and statistically characterize the resulting model. The author has used the material in the undergraduate unit operations lab course and in advanced control applications.
Publisher: John Wiley & Sons
ISBN: 1118597966
Category : Mathematics
Languages : en
Pages : 402
Book Description
Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications related to diagnosis, design, and optimization. First, we postulate a mechanism, then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Patterns in the residuals can guide model improvement. Alternately, when the model fits the data, our understanding is sufficient and confidently functional for engineering applications. This book details methods of nonlinear regression, computational algorithms,model validation, interpretation of residuals, and useful experimental design. The focus is on practical applications, with relevant methods supported by fundamental analysis. This book will assist either the academic or industrial practitioner to properly classify the system, choose between the various available modeling options and regression objectives, design experiments to obtain data capturing critical system behaviors, fit the model parameters based on that data, and statistically characterize the resulting model. The author has used the material in the undergraduate unit operations lab course and in advanced control applications.
Numerical Methods for Nonlinear Engineering Models
Author: John R. Hauser
Publisher: Springer Science & Business Media
ISBN: 1402099207
Category : Technology & Engineering
Languages : en
Pages : 1013
Book Description
There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.
Publisher: Springer Science & Business Media
ISBN: 1402099207
Category : Technology & Engineering
Languages : en
Pages : 1013
Book Description
There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.
Generalized Linear Models
Author: Raymond H. Myers
Publisher: John Wiley & Sons
ISBN: 0470556978
Category : Mathematics
Languages : en
Pages : 521
Book Description
Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.
Publisher: John Wiley & Sons
ISBN: 0470556978
Category : Mathematics
Languages : en
Pages : 521
Book Description
Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.
Nonlinear Regression with R
Author: Christian Ritz
Publisher: Springer Science & Business Media
ISBN: 0387096167
Category : Mathematics
Languages : en
Pages : 151
Book Description
- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.
Publisher: Springer Science & Business Media
ISBN: 0387096167
Category : Mathematics
Languages : en
Pages : 151
Book Description
- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.
Engineering Optimization
Author: R. Russell Rhinehart
Publisher: John Wiley & Sons
ISBN: 1118936337
Category : Technology & Engineering
Languages : en
Pages : 769
Book Description
An Application-Oriented Introduction to Essential Optimization Concepts and Best Practices Optimization is an inherent human tendency that gained new life after the advent of calculus; now, as the world grows increasingly reliant on complex systems, optimization has become both more important and more challenging than ever before. Engineering Optimization provides a practically-focused introduction to modern engineering optimization best practices, covering fundamental analytical and numerical techniques throughout each stage of the optimization process. Although essential algorithms are explained in detail, the focus lies more in the human function: how to create an appropriate objective function, choose decision variables, identify and incorporate constraints, define convergence, and other critical issues that define the success or failure of an optimization project. Examples, exercises, and homework throughout reinforce the author’s “do, not study” approach to learning, underscoring the application-oriented discussion that provides a deep, generic understanding of the optimization process that can be applied to any field. Providing excellent reference for students or professionals, Engineering Optimization: Describes and develops a variety of algorithms, including gradient based (such as Newton’s, and Levenberg-Marquardt), direct search (such as Hooke-Jeeves, Leapfrogging, and Particle Swarm), along with surrogate functions for surface characterization Provides guidance on optimizer choice by application, and explains how to determine appropriate optimizer parameter values Details current best practices for critical stages of specifying an optimization procedure, including decision variables, defining constraints, and relationship modeling Provides access to software and Visual Basic macros for Excel on the companion website, along with solutions to examples presented in the book Clear explanations, explicit equation derivations, and practical examples make this book ideal for use as part of a class or self-study, assuming a basic understanding of statistics, calculus, computer programming, and engineering models. Anyone seeking best practices for “making the best choices” will find value in this introductory resource.
Publisher: John Wiley & Sons
ISBN: 1118936337
Category : Technology & Engineering
Languages : en
Pages : 769
Book Description
An Application-Oriented Introduction to Essential Optimization Concepts and Best Practices Optimization is an inherent human tendency that gained new life after the advent of calculus; now, as the world grows increasingly reliant on complex systems, optimization has become both more important and more challenging than ever before. Engineering Optimization provides a practically-focused introduction to modern engineering optimization best practices, covering fundamental analytical and numerical techniques throughout each stage of the optimization process. Although essential algorithms are explained in detail, the focus lies more in the human function: how to create an appropriate objective function, choose decision variables, identify and incorporate constraints, define convergence, and other critical issues that define the success or failure of an optimization project. Examples, exercises, and homework throughout reinforce the author’s “do, not study” approach to learning, underscoring the application-oriented discussion that provides a deep, generic understanding of the optimization process that can be applied to any field. Providing excellent reference for students or professionals, Engineering Optimization: Describes and develops a variety of algorithms, including gradient based (such as Newton’s, and Levenberg-Marquardt), direct search (such as Hooke-Jeeves, Leapfrogging, and Particle Swarm), along with surrogate functions for surface characterization Provides guidance on optimizer choice by application, and explains how to determine appropriate optimizer parameter values Details current best practices for critical stages of specifying an optimization procedure, including decision variables, defining constraints, and relationship modeling Provides access to software and Visual Basic macros for Excel on the companion website, along with solutions to examples presented in the book Clear explanations, explicit equation derivations, and practical examples make this book ideal for use as part of a class or self-study, assuming a basic understanding of statistics, calculus, computer programming, and engineering models. Anyone seeking best practices for “making the best choices” will find value in this introductory resource.
Fitting Models to Biological Data Using Linear and Nonlinear Regression
Author: Harvey Motulsky
Publisher: Oxford University Press
ISBN: 9780198038344
Category : Mathematics
Languages : en
Pages : 352
Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Publisher: Oxford University Press
ISBN: 9780198038344
Category : Mathematics
Languages : en
Pages : 352
Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Applied Engineering Statistics
Author: R.Russell Rhinehart
Publisher: Routledge
ISBN: 1351466100
Category : Mathematics
Languages : en
Pages : 481
Book Description
Originally published in 1991. Textbook on the understanding and application of statistical procedures to engineering problems, for practicing engineers who once had an introductory course in statistics, but haven't used the techniques in a long time.
Publisher: Routledge
ISBN: 1351466100
Category : Mathematics
Languages : en
Pages : 481
Book Description
Originally published in 1991. Textbook on the understanding and application of statistical procedures to engineering problems, for practicing engineers who once had an introductory course in statistics, but haven't used the techniques in a long time.
Space Engineering
Author: Giorgio Fasano
Publisher: Springer
ISBN: 3319415085
Category : Mathematics
Languages : en
Pages : 492
Book Description
This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering •Regression-Based Sensitivity Analysis and Robust Design •Low-Thrust Multi-Revolution Orbit Transfers •Modeling and Optimization of Balance Layout Problems •Pilot-Induced Oscillations Alleviation •Modeling and Optimization of Hybrid Transfers to Near-Earth Objects •Probabilistic Safety Analysis of the Collision Between Space Debris and Satellite •Flatness-based Low-thrust Trajectory Optimization for Spacecraft Proximity Operations The contributing authors are expert researchers and practitioners in either the space engineering and/or in the applied optimization fields. Researchers and practitioners working in various applied aspects of space engineering will find this book practical and informative. Academics, graduate and post-graduate students in aerospace engineering, applied mathematics, operations research, optimization, and optimal control, will find this book useful.
Publisher: Springer
ISBN: 3319415085
Category : Mathematics
Languages : en
Pages : 492
Book Description
This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering •Regression-Based Sensitivity Analysis and Robust Design •Low-Thrust Multi-Revolution Orbit Transfers •Modeling and Optimization of Balance Layout Problems •Pilot-Induced Oscillations Alleviation •Modeling and Optimization of Hybrid Transfers to Near-Earth Objects •Probabilistic Safety Analysis of the Collision Between Space Debris and Satellite •Flatness-based Low-thrust Trajectory Optimization for Spacecraft Proximity Operations The contributing authors are expert researchers and practitioners in either the space engineering and/or in the applied optimization fields. Researchers and practitioners working in various applied aspects of space engineering will find this book practical and informative. Academics, graduate and post-graduate students in aerospace engineering, applied mathematics, operations research, optimization, and optimal control, will find this book useful.
Nonlinear Regression Analysis and Its Applications
Author: Douglas M. Bates
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 398
Book Description
Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 398
Book Description
Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.
Engineering Applications of Neural Networks
Author: Lazaros Iliadis
Publisher: Springer
ISBN: 331923983X
Category : Computers
Languages : en
Pages : 409
Book Description
This book constitutes the refereed proceedings of the 16th International Conference on Engineering Applications of Neural Networks, EANN 2015, held in Rhodes, Greece, in September 2015. The 36 revised full papers presented together with the abstracts of three invited talks and two tutorials were carefully reviewed and selected from 84 submissions. The papers are organized in topical sections on industrial-engineering applications of ANN; bioinformatics; intelligent medical modeling; life-earth sciences intelligent modeling; learning-algorithms; intelligent telecommunications modeling; fuzzy modeling; robotics and control; smart cameras; pattern recognition-facial mapping; classification; financial intelligent modeling; echo state networks.
Publisher: Springer
ISBN: 331923983X
Category : Computers
Languages : en
Pages : 409
Book Description
This book constitutes the refereed proceedings of the 16th International Conference on Engineering Applications of Neural Networks, EANN 2015, held in Rhodes, Greece, in September 2015. The 36 revised full papers presented together with the abstracts of three invited talks and two tutorials were carefully reviewed and selected from 84 submissions. The papers are organized in topical sections on industrial-engineering applications of ANN; bioinformatics; intelligent medical modeling; life-earth sciences intelligent modeling; learning-algorithms; intelligent telecommunications modeling; fuzzy modeling; robotics and control; smart cameras; pattern recognition-facial mapping; classification; financial intelligent modeling; echo state networks.