Author: William F. Ames
Publisher: Academic Press
ISBN: 148322581X
Category : Science
Languages : en
Pages : 267
Book Description
Nonlinear Problems of Engineering reviews certain nonlinear problems of engineering. This book provides a discussion of nonlinear problems that occur in four areas, namely, mathematical methods, fluid mechanics, mechanics of solids, and transport phenomena. Organized into 15 chapters, this book begins with an overview of some of the fundamental ideas of two mathematical theories, namely, invariant imbedding and dynamic programming. This text then explores nonlinear integral equations, which have long occupied a prominent place in mathematical analysis. Other chapters consider the phenomena associated with essentially divergent small-divisor series, such as may occur in the formal solution of differential equations that represent the oscillations of conservative dynamical systems. This book discusses as well the mechanics of idealized textiles consisting of inextensible filaments. The final chapter deals with the use of the Peaceman–Rachford alternating direction implicit method for solving the finite difference analogs of boundary value problems. This book is a valuable resource for engineers and mathematicians.
Nonlinear Problems of Engineering
Author: William F. Ames
Publisher: Academic Press
ISBN: 148322581X
Category : Science
Languages : en
Pages : 267
Book Description
Nonlinear Problems of Engineering reviews certain nonlinear problems of engineering. This book provides a discussion of nonlinear problems that occur in four areas, namely, mathematical methods, fluid mechanics, mechanics of solids, and transport phenomena. Organized into 15 chapters, this book begins with an overview of some of the fundamental ideas of two mathematical theories, namely, invariant imbedding and dynamic programming. This text then explores nonlinear integral equations, which have long occupied a prominent place in mathematical analysis. Other chapters consider the phenomena associated with essentially divergent small-divisor series, such as may occur in the formal solution of differential equations that represent the oscillations of conservative dynamical systems. This book discusses as well the mechanics of idealized textiles consisting of inextensible filaments. The final chapter deals with the use of the Peaceman–Rachford alternating direction implicit method for solving the finite difference analogs of boundary value problems. This book is a valuable resource for engineers and mathematicians.
Publisher: Academic Press
ISBN: 148322581X
Category : Science
Languages : en
Pages : 267
Book Description
Nonlinear Problems of Engineering reviews certain nonlinear problems of engineering. This book provides a discussion of nonlinear problems that occur in four areas, namely, mathematical methods, fluid mechanics, mechanics of solids, and transport phenomena. Organized into 15 chapters, this book begins with an overview of some of the fundamental ideas of two mathematical theories, namely, invariant imbedding and dynamic programming. This text then explores nonlinear integral equations, which have long occupied a prominent place in mathematical analysis. Other chapters consider the phenomena associated with essentially divergent small-divisor series, such as may occur in the formal solution of differential equations that represent the oscillations of conservative dynamical systems. This book discusses as well the mechanics of idealized textiles consisting of inextensible filaments. The final chapter deals with the use of the Peaceman–Rachford alternating direction implicit method for solving the finite difference analogs of boundary value problems. This book is a valuable resource for engineers and mathematicians.
Numerical Methods for Nonlinear Engineering Models
Author: John R. Hauser
Publisher: Springer Science & Business Media
ISBN: 1402099207
Category : Technology & Engineering
Languages : en
Pages : 1013
Book Description
There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.
Publisher: Springer Science & Business Media
ISBN: 1402099207
Category : Technology & Engineering
Languages : en
Pages : 1013
Book Description
There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.
Nonlinear Problems in Machine Design
Author: Eliahu Zahavi
Publisher: CRC Press
ISBN: 1420039377
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Modern machine design challenges engineers with a myriad of nonlinear problems, among them fatigue, friction, plasticity, and excessive deformation. Today's advanced numerical computer programs bring optimal solutions to these complex problems within reach, but not without a trained and experienced overseer. Nonlinear Problems in Machine Des
Publisher: CRC Press
ISBN: 1420039377
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Modern machine design challenges engineers with a myriad of nonlinear problems, among them fatigue, friction, plasticity, and excessive deformation. Today's advanced numerical computer programs bring optimal solutions to these complex problems within reach, but not without a trained and experienced overseer. Nonlinear Problems in Machine Des
Nonlinear Approaches in Engineering Applications
Author: Reza N. Jazar
Publisher: Springer
ISBN: 3030189635
Category : Technology & Engineering
Languages : en
Pages : 486
Book Description
This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology, including automotive dynamics, control for electric and hybrid vehicles, and autodriver algorithm for autonomous vehicles. Also included are discussions on renewable energy plants, data modeling, driver-aid methods, and low-frequency vibration. Chapters are based on invited contributions from world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy effective systems. This book is appropriate for researchers, students, and practising engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems. Presents a broad range of practical topics and approaches; Explains approaches to better, safer, and cheaper systems; Emphasises automotive applications, physical meaning, and methodologies.
Publisher: Springer
ISBN: 3030189635
Category : Technology & Engineering
Languages : en
Pages : 486
Book Description
This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology, including automotive dynamics, control for electric and hybrid vehicles, and autodriver algorithm for autonomous vehicles. Also included are discussions on renewable energy plants, data modeling, driver-aid methods, and low-frequency vibration. Chapters are based on invited contributions from world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy effective systems. This book is appropriate for researchers, students, and practising engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems. Presents a broad range of practical topics and approaches; Explains approaches to better, safer, and cheaper systems; Emphasises automotive applications, physical meaning, and methodologies.
Nonlinear Structural Engineering
Author: Demeter G. Fertis
Publisher: Springer Science & Business Media
ISBN: 3540329765
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
This book concentrates on the nonlinear static and dynamic analysis of structures and structural components that are widely used in everyday engineering applications. It presents unique methods for nonlinear problems which permits the correct usage of powerful linear methods. Every topic is thoroughly explained and includes numerical examples. The new concepts, theories and methods introduced simplify the solution of the complex nonlinear problems.
Publisher: Springer Science & Business Media
ISBN: 3540329765
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
This book concentrates on the nonlinear static and dynamic analysis of structures and structural components that are widely used in everyday engineering applications. It presents unique methods for nonlinear problems which permits the correct usage of powerful linear methods. Every topic is thoroughly explained and includes numerical examples. The new concepts, theories and methods introduced simplify the solution of the complex nonlinear problems.
Newton Methods for Nonlinear Problems
Author: Peter Deuflhard
Publisher: Springer Science & Business Media
ISBN: 9783540210993
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.
Publisher: Springer Science & Business Media
ISBN: 9783540210993
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.
Nonlinear Problems of Elasticity
Author: Stuart Antman
Publisher: Springer Science & Business Media
ISBN: 1475741472
Category : Mathematics
Languages : en
Pages : 762
Book Description
The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.
Publisher: Springer Science & Business Media
ISBN: 1475741472
Category : Mathematics
Languages : en
Pages : 762
Book Description
The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.
Nonlinear Partial Differential Equations for Scientists and Engineers
Author: Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 1489928464
Category : Mathematics
Languages : en
Pages : 602
Book Description
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Publisher: Springer Science & Business Media
ISBN: 1489928464
Category : Mathematics
Languages : en
Pages : 602
Book Description
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Nonlinear Control of Engineering Systems
Author: Warren E. Dixon
Publisher: Springer Science & Business Media
ISBN: 1461200318
Category : Technology & Engineering
Languages : en
Pages : 410
Book Description
This practical yet rigorous book provides a development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation.
Publisher: Springer Science & Business Media
ISBN: 1461200318
Category : Technology & Engineering
Languages : en
Pages : 410
Book Description
This practical yet rigorous book provides a development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation.
Nonlinear Problems in Abstract Cones
Author: Dajun Guo
Publisher: Academic Press
ISBN: 1483261905
Category : Mathematics
Languages : en
Pages : 286
Book Description
Notes and Reports in Mathematics in Science and Engineering, Volume 5: Nonlinear Problems in Abstract Cones presents the investigation of nonlinear problems in abstract cones. This book uses the theory of cones coupled with the fixed point index to investigate positive fixed points of various classes of nonlinear operators. Organized into four chapters, this volume begins with an overview of the fundamental properties of cones coupled with the fixed point index. This text then employs the fixed point theory developed to discuss positive solutions of nonlinear integral equations. Other chapters consider several examples from integral and differential equations to illustrate the abstract results. This book discusses as well the fixed points of increasing and decreasing operators. The final chapter deals with the development of the theory of nonlinear differential equations in cones. This book is a valuable resource for graduate students in mathematics. Mathematicians and researchers will also find this book useful.
Publisher: Academic Press
ISBN: 1483261905
Category : Mathematics
Languages : en
Pages : 286
Book Description
Notes and Reports in Mathematics in Science and Engineering, Volume 5: Nonlinear Problems in Abstract Cones presents the investigation of nonlinear problems in abstract cones. This book uses the theory of cones coupled with the fixed point index to investigate positive fixed points of various classes of nonlinear operators. Organized into four chapters, this volume begins with an overview of the fundamental properties of cones coupled with the fixed point index. This text then employs the fixed point theory developed to discuss positive solutions of nonlinear integral equations. Other chapters consider several examples from integral and differential equations to illustrate the abstract results. This book discusses as well the fixed points of increasing and decreasing operators. The final chapter deals with the development of the theory of nonlinear differential equations in cones. This book is a valuable resource for graduate students in mathematics. Mathematicians and researchers will also find this book useful.