Nonlinear Potential Theory of Degenerate Elliptic Equations

Nonlinear Potential Theory of Degenerate Elliptic Equations PDF Author: Juha Heinonen
Publisher: Courier Dover Publications
ISBN: 0486830462
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
A self-contained treatment appropriate for advanced undergraduates and graduate students, this text offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. 1993 edition.

Nonlinear Potential Theory of Degenerate Elliptic Equations

Nonlinear Potential Theory of Degenerate Elliptic Equations PDF Author: Juha Heinonen
Publisher: Courier Dover Publications
ISBN: 0486830462
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
A self-contained treatment appropriate for advanced undergraduates and graduate students, this text offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. 1993 edition.

Nonlinear Potential Theory of Degenerate Elliptic Equations

Nonlinear Potential Theory of Degenerate Elliptic Equations PDF Author: Juha Heinonen
Publisher: Courier Dover Publications
ISBN: 048682425X
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
A self-contained treatment appropriate for advanced undergraduate and graduate students, this volume offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. Starting with the theory of weighted Sobolev spaces, the text advances to the theory of weighted variational capacity. Succeeding chapters investigate solutions and supersolutions of equations, with emphasis on refined Sobolev spaces, variational integrals, and harmonic functions. Chapter 7 defines superharmonic functions via the comparison principle, and chapters 8 through 14 form the core of the nonlinear potential theory of superharmonic functions. Topics include balayage; Perron's method, barriers, and resolutivity; polar sets; harmonic measure; fine topology; harmonic morphisms; and quasiregular mappings. The book concludes with explorations of axiomatic nonlinear potential theory and helpful appendixes.

Nonlinear Potential Theory and Weighted Sobolev Spaces

Nonlinear Potential Theory and Weighted Sobolev Spaces PDF Author: Bengt O. Turesson
Publisher: Springer
ISBN: 3540451684
Category : Mathematics
Languages : en
Pages : 188

Get Book Here

Book Description
The book systematically develops the nonlinear potential theory connected with the weighted Sobolev spaces, where the weight usually belongs to Muckenhoupt's class of Ap weights. These spaces occur as solutions spaces for degenerate elliptic partial differential equations. The Sobolev space theory covers results concerning approximation, extension, and interpolation, Sobolev and Poincaré inequalities, Maz'ya type embedding theorems, and isoperimetric inequalities. In the chapter devoted to potential theory, several weighted capacities are investigated. Moreover, "Kellogg lemmas" are established for various concepts of thinness. Applications of potential theory to weighted Sobolev spaces include quasi continuity of Sobolev functions, Poincaré inequalities, and spectral synthesis theorems.

Sobolev Spaces in Mathematics I

Sobolev Spaces in Mathematics I PDF Author: Vladimir Maz'ya
Publisher: Springer Science & Business Media
ISBN: 038785648X
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.

Moduli in Modern Mapping Theory

Moduli in Modern Mapping Theory PDF Author: Olli Martio
Publisher: Springer Science & Business Media
ISBN: 0387855882
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
Based on recent research papers, this book presents a modern account of mapping theory with emphasis on quasiconformal mapping and its generalizations. It contains an extensive bibliography.

Potential Theory - ICPT 94

Potential Theory - ICPT 94 PDF Author: Josef Kral
Publisher: Walter de Gruyter
ISBN: 3110818574
Category : Mathematics
Languages : en
Pages : 513

Get Book Here

Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Nonlinear Potential Theory on Metric Spaces

Nonlinear Potential Theory on Metric Spaces PDF Author: Anders Björn
Publisher: European Mathematical Society
ISBN: 9783037190999
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for interested readers and as a reference text for active researchers. The presentation is rather self contained, but it is assumed that readers know measure theory and functional analysis. The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces, and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space. Each chapter contains historical notes with relevant references, and an extensive index is provided at the end of the book.

The $p$-Harmonic Equation and Recent Advances in Analysis

The $p$-Harmonic Equation and Recent Advances in Analysis PDF Author: Pietro Poggi-Corradini
Publisher: American Mathematical Soc.
ISBN: 0821836102
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
Comprised of papers from the IIIrd Prairie Analysis Seminar held at Kansas State University, this book reflects the many directions of current research in harmonic analysis and partial differential equations. Included is the work of the distinguished main speaker, Tadeusz Iwaniec, his invited guests John Lewis and Juan Manfredi, and many other leading researchers. The main topic is the so-called p-harmonic equation, which is a family of nonlinear partial differential equations generalizing the usual Laplace equation. This study of p-harmonic equations touches upon many areas of analysis with deep relations to functional analysis, potential theory, and calculus of variations. The material is suitable for graduate students and research mathematicians interested in harmonic analysis and partial differential equations.

Potentials and Partial Differential Equations

Potentials and Partial Differential Equations PDF Author: Suzanne Lenhart
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110792788
Category : Mathematics
Languages : en
Pages : 365

Get Book Here

Book Description
This volume is dedicated to the legacy of David R. Adams (1941-2021) and discusses calculus of variations, functional - harmonic - potential analysis, partial differential equations, and their applications in modeling, mathematical physics, and differential - integral geometry.

Geometric Analysis

Geometric Analysis PDF Author: Jingyi Chen
Publisher: Springer Nature
ISBN: 3030349535
Category : Mathematics
Languages : en
Pages : 615

Get Book Here

Book Description
This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.