Author:
Publisher: Academic Press
ISBN: 0080864570
Category : Science
Languages : en
Pages : 351
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Nonlinear Optics in Semiconductors II
Author:
Publisher: Academic Press
ISBN: 0080864570
Category : Science
Languages : en
Pages : 351
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Publisher: Academic Press
ISBN: 0080864570
Category : Science
Languages : en
Pages : 351
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
The Elements of Nonlinear Optics
Author: Paul N. Butcher
Publisher: Cambridge University Press
ISBN: 9780521424240
Category : Science
Languages : en
Pages : 364
Book Description
There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.
Publisher: Cambridge University Press
ISBN: 9780521424240
Category : Science
Languages : en
Pages : 364
Book Description
There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.
Nonlinear Optics in Semiconductors I
Author:
Publisher: Academic Press
ISBN: 0080864562
Category : Science
Languages : en
Pages : 445
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Publisher: Academic Press
ISBN: 0080864562
Category : Science
Languages : en
Pages : 445
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Nonlinear Optics in Semiconductors II
Author: Elsa Garmire
Publisher:
ISBN: 9780123910820
Category :
Languages : en
Pages : 334
Book Description
Treatise editors: Robert K. Willardson and Eicke R. Weber
Publisher:
ISBN: 9780123910820
Category :
Languages : en
Pages : 334
Book Description
Treatise editors: Robert K. Willardson and Eicke R. Weber
Semiconductor Quantum Science and Technology
Author:
Publisher: Academic Press
ISBN: 0128237732
Category : Science
Languages : en
Pages : 482
Book Description
Semiconductor quantum science and technology is exploring the exciting and emerging prospects of integrating quantum functionality on semiconductor platforms to convert current information technology into quantum information technology. The past twenty years have led to incredible advances in this field. This book brings together the leading scientists who present the main achievements and challenges by reviewing and motivating the state-of-the-art at a tutorial level. The key challenges include creating quantum-light sources, quantum information processing via strong light-matter interaction, discovering new quantum materials as well as quasiparticles, and determining new quantum spectroscopic methodologies for superior control of quantum phenomena. As an important step, integration of these solutions on a semiconductor chip is discussed, and outlook for the future of semiconductor quantum science and technology is given.
Publisher: Academic Press
ISBN: 0128237732
Category : Science
Languages : en
Pages : 482
Book Description
Semiconductor quantum science and technology is exploring the exciting and emerging prospects of integrating quantum functionality on semiconductor platforms to convert current information technology into quantum information technology. The past twenty years have led to incredible advances in this field. This book brings together the leading scientists who present the main achievements and challenges by reviewing and motivating the state-of-the-art at a tutorial level. The key challenges include creating quantum-light sources, quantum information processing via strong light-matter interaction, discovering new quantum materials as well as quasiparticles, and determining new quantum spectroscopic methodologies for superior control of quantum phenomena. As an important step, integration of these solutions on a semiconductor chip is discussed, and outlook for the future of semiconductor quantum science and technology is given.
Principles and Applications of Nonlinear Optical Materials
Author: R.W. Munn
Publisher: Springer Science & Business Media
ISBN: 9401121583
Category : Technology & Engineering
Languages : en
Pages : 265
Book Description
Nonlinear optics is a topic of much current interest that exhibits a great diversity. Some publications on the subject are clearly physics, while others reveal an engineering bias; some appear to be accessible to the chemist, while others may appeal to biological understanding. Yet all purport to be non linear optics so where is the underlying unity? The answer is that the unity lies in the phenomena and the devices that exploit them, while the diversity lies in the materials used to express the phenomena. This book is an attempt to show this unity in diversity by bringing together contributions covering an unusually wide range of materials, preceded by accounts of the main phenomena and important devices. Because ofthe diversity, individual materials are treated in separate chapters by different expert authors, while as editors we have shouldered the task of providing the unifying initial chapters. Most main classes of nonlinear optical solids are treated: semiconductors, glasses, ferroelectrics, molecular crystals, polymers, and Langmuir-Blodgett films. (However, liquid crystals are not covered. ) Each class of material is enough for a monograph in itself, and this book is designed to be an introduction suitable for graduate students and those in industry entering the area of nonlinear optics. It is also suitable in parts for final-year undergraduates on project work. It aims to provide a bridge between traditional fields of expertise and the broader field of nonlinear optics.
Publisher: Springer Science & Business Media
ISBN: 9401121583
Category : Technology & Engineering
Languages : en
Pages : 265
Book Description
Nonlinear optics is a topic of much current interest that exhibits a great diversity. Some publications on the subject are clearly physics, while others reveal an engineering bias; some appear to be accessible to the chemist, while others may appeal to biological understanding. Yet all purport to be non linear optics so where is the underlying unity? The answer is that the unity lies in the phenomena and the devices that exploit them, while the diversity lies in the materials used to express the phenomena. This book is an attempt to show this unity in diversity by bringing together contributions covering an unusually wide range of materials, preceded by accounts of the main phenomena and important devices. Because ofthe diversity, individual materials are treated in separate chapters by different expert authors, while as editors we have shouldered the task of providing the unifying initial chapters. Most main classes of nonlinear optical solids are treated: semiconductors, glasses, ferroelectrics, molecular crystals, polymers, and Langmuir-Blodgett films. (However, liquid crystals are not covered. ) Each class of material is enough for a monograph in itself, and this book is designed to be an introduction suitable for graduate students and those in industry entering the area of nonlinear optics. It is also suitable in parts for final-year undergraduates on project work. It aims to provide a bridge between traditional fields of expertise and the broader field of nonlinear optics.
Nonlinear Optics and Quantum Electronics
Author: Max Schubert
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 758
Book Description
This book is based on a course of lectures for advanced students. Part 1 is devoted to an introductory treatment of general concepts and methods to be used for describing nonlinear processes. Part 2 is concerned with the application of these concepts and methods to significant effects and processes, covering also the particular experimental arrangements, measuring methods, and empirical data connected with them.
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 758
Book Description
This book is based on a course of lectures for advanced students. Part 1 is devoted to an introductory treatment of general concepts and methods to be used for describing nonlinear processes. Part 2 is concerned with the application of these concepts and methods to significant effects and processes, covering also the particular experimental arrangements, measuring methods, and empirical data connected with them.
Extreme Nonlinear Optics
Author: Martin Wegener
Publisher: Springer Science & Business Media
ISBN: 3540266887
Category : Science
Languages : en
Pages : 225
Book Description
Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The following chapters gradually guide the student towards the current "state of the art" and provide a comprehensive overview of the field. Every chapter is accompanied by exercises to deepen the reader's understanding of important topics, with detailed solutions at the end of the book.
Publisher: Springer Science & Business Media
ISBN: 3540266887
Category : Science
Languages : en
Pages : 225
Book Description
Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The following chapters gradually guide the student towards the current "state of the art" and provide a comprehensive overview of the field. Every chapter is accompanied by exercises to deepen the reader's understanding of important topics, with detailed solutions at the end of the book.
Hydrogen in Semiconductors II
Author:
Publisher: Academic Press
ISBN: 0080525253
Category : Science
Languages : en
Pages : 541
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. - Provides the most in-depth coverage of hydrogen in silicon available in a single source - Includes an extensive chapter on the neutralization of defects in III*b1V semiconductors - Combines both experimental and theoretical studies to form a comprehensive reference
Publisher: Academic Press
ISBN: 0080525253
Category : Science
Languages : en
Pages : 541
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. - Provides the most in-depth coverage of hydrogen in silicon available in a single source - Includes an extensive chapter on the neutralization of defects in III*b1V semiconductors - Combines both experimental and theoretical studies to form a comprehensive reference
Semiconductor Optics 2
Author: Heinz Kalt
Publisher: Springer Nature
ISBN: 3031512960
Category :
Languages : en
Pages : 567
Book Description
Publisher: Springer Nature
ISBN: 3031512960
Category :
Languages : en
Pages : 567
Book Description