Principles and Applications of Nonlinear Optical Materials

Principles and Applications of Nonlinear Optical Materials PDF Author: R.W. Munn
Publisher: Springer Science & Business Media
ISBN: 9401121583
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book Here

Book Description
Nonlinear optics is a topic of much current interest that exhibits a great diversity. Some publications on the subject are clearly physics, while others reveal an engineering bias; some appear to be accessible to the chemist, while others may appeal to biological understanding. Yet all purport to be non linear optics so where is the underlying unity? The answer is that the unity lies in the phenomena and the devices that exploit them, while the diversity lies in the materials used to express the phenomena. This book is an attempt to show this unity in diversity by bringing together contributions covering an unusually wide range of materials, preceded by accounts of the main phenomena and important devices. Because ofthe diversity, individual materials are treated in separate chapters by different expert authors, while as editors we have shouldered the task of providing the unifying initial chapters. Most main classes of nonlinear optical solids are treated: semiconductors, glasses, ferroelectrics, molecular crystals, polymers, and Langmuir-Blodgett films. (However, liquid crystals are not covered. ) Each class of material is enough for a monograph in itself, and this book is designed to be an introduction suitable for graduate students and those in industry entering the area of nonlinear optics. It is also suitable in parts for final-year undergraduates on project work. It aims to provide a bridge between traditional fields of expertise and the broader field of nonlinear optics.

Principles and Applications of Nonlinear Optical Materials

Principles and Applications of Nonlinear Optical Materials PDF Author: R.W. Munn
Publisher: Springer Science & Business Media
ISBN: 9401121583
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book Here

Book Description
Nonlinear optics is a topic of much current interest that exhibits a great diversity. Some publications on the subject are clearly physics, while others reveal an engineering bias; some appear to be accessible to the chemist, while others may appeal to biological understanding. Yet all purport to be non linear optics so where is the underlying unity? The answer is that the unity lies in the phenomena and the devices that exploit them, while the diversity lies in the materials used to express the phenomena. This book is an attempt to show this unity in diversity by bringing together contributions covering an unusually wide range of materials, preceded by accounts of the main phenomena and important devices. Because ofthe diversity, individual materials are treated in separate chapters by different expert authors, while as editors we have shouldered the task of providing the unifying initial chapters. Most main classes of nonlinear optical solids are treated: semiconductors, glasses, ferroelectrics, molecular crystals, polymers, and Langmuir-Blodgett films. (However, liquid crystals are not covered. ) Each class of material is enough for a monograph in itself, and this book is designed to be an introduction suitable for graduate students and those in industry entering the area of nonlinear optics. It is also suitable in parts for final-year undergraduates on project work. It aims to provide a bridge between traditional fields of expertise and the broader field of nonlinear optics.

Linear and Nonlinear Optics

Linear and Nonlinear Optics PDF Author: Kitsakorn Locharoenrat
Publisher: CRC Press
ISBN: 1000091848
Category : Science
Languages : en
Pages : 345

Get Book Here

Book Description
In recent years, optical properties of the unique atomic and molecular structures of materials have drawn great scientific interest. Linear optical properties of materials such as metals, metal oxides, magnetic oxides, and organic materials are based on energy transfer and find applications in wastewater treatment, forensic science, biomedical science, photovoltaics, nuclear technology, and LED displays. Nonlinear optical properties of materials are based on the nonlinear medium and find more advanced applications in frequency mixing generations and optical parametric oscillations. This book presents the underlying principles, implementation, and applications of the linear and nonlinear optical properties of materials and has been divided into two parts emphasizing these properties. The first part of the book, Linear Optics, discusses bimetallic nanoparticles in dielectric media and their integration to dye molecules to detect trace amounts of heavy metals at the nanometer level, as well as to enhance luminescence and image contrasts in forensic inspection and biomedical diagnosis. It shows how the integration of bimetallic nanoparticles into a ZnO matrix promotes broadening of the absorption spectrum from the ultraviolet to the visible wavelength. It explains the role of surface adsorption and photocatalytic degradation in dye-removal kinetics by Fe3O4 magnetic nanoparticles under pulsed white light. It also discusses the double-layer shielding tank design to safely store radioactive waste and photon propagation through the multilayer structures of a human tissue model. The second part of the book, Nonlinear Optics, presents general concepts such as electromagnetic theory, nonlinear medium, and wave propagation, as well as more advanced concepts such as second harmonic generation, phase matching, optical parametric interactions, different frequency generation, sum frequency generation, tunable laser, and optical resonant oscillator.

Nonlinear Optics

Nonlinear Optics PDF Author: Karsten Rottwitt
Publisher: CRC Press
ISBN: 1466565837
Category : Science
Languages : en
Pages : 345

Get Book Here

Book Description
This book describes the fundamental aspects of nonlinear optics from basic principles to applications. Starting from the polarization induced by an electric field in a material, it relates the induced polarization to the propagating fields. It describes the properties of the induced polarization through a material response expressed both in the time and frequency domains leading to the nonlinear wave equation. The second part of the book focuses on applications of nonlinear interaction between light and matter, and considers nonlinearities in crystals and optical fibers.

Nonlinear Optical Materials: Principles and Applications

Nonlinear Optical Materials: Principles and Applications PDF Author: Società italiana di fisica
Publisher: IOS Press
ISBN: 1614992126
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
Nonlinear optical materials play a pivotal role in the future evolution of nonlinear optics in general and its impact in technology and industrial applications in particular. The progress in nonlinear optics has been tremendous since the first demonstration of an all-optical nonlinear effect in the early sixties, but until recently the main visible emphasis was on the physical aspects of the nonlinear radiation matter interaction. In the last decade, however, this effort has also brought its fruits in applied aspects of nonlinear optics. This can be essentially traced to the improvement of the performances of the nonlinear optical materials. Our understanding of the nonlinear polarization mechanisms and their relation to the structural characteristics of the materials has been considerably improved. In addition, the new development of techniques for the fabrication and growth of artificial materials has dramatically contributed to this evolution. The goal is to find and develop materials presenting large nonlinearities and satisfying at the same time all the technological requirements for applications such as wide transparency range, fast response, high damage threshold but also processability, adaptability and interfacing with other materials. Improvements, besides rendering possible the implementation of nonlinear effects in devices, open the way to the study of new nonlinear optical effects and the introduction of new concepts. This book describes new concepts which are emerging in the field of nonlinear optical materials, concentrating the attention on materials which seem more promising for applications in the technology of information transmission and processing.

Nonlinear Optics

Nonlinear Optics PDF Author: Robert W. Boyd
Publisher: Elsevier
ISBN: 0080479758
Category : Technology & Engineering
Languages : en
Pages : 596

Get Book Here

Book Description
The Optical Society of America (OSA) and SPIE – The International Society for Optical Engineering have awarded Robert Boyd with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Optics, 2nd edition.Nonlinear optics is essentially the study of the interaction of strong laser light with matter. It lies at the basis of the field of photonics, the use of light fields to control other light fields and to perform logical operations. Some of the topics of this book include the fundamentals and applications of optical systems based on the nonlinear interaction of light with matter. Topics to be treated include: mechanisms of optical nonlinearity, second-harmonic and sum- and difference-frequency generation, photonics and optical logic, optical self-action effects including self-focusing and optical soliton formation, optical phase conjugation, stimulated Brillouin and stimulated Raman scattering, and selection criteria of nonlinear optical materials.· Covers all the latest topics and technology in this ever-evolving area of study that forms the backbone of the major applications of optical technology· Offers first-rate instructive style making it ideal for self-study· Emphasizes the fundamentals of non-linear optics rather than focus on particular applications that are constantly changing

Nonlinear Optical Materials

Nonlinear Optical Materials PDF Author: Jerome V. Moloney
Publisher: Springer Science & Business Media
ISBN: 9780387985817
Category : Business & Economics
Languages : en
Pages : 270

Get Book Here

Book Description
Mathematical methods play a significant role in the rapidly growing field of nonlinear optical materials. This volume discusses a number of successful or promising contributions. The overall theme of this volume is twofold: (1) the challenges faced in computing and optimizing nonlinear optical material properties; and (2) the exploitation of these properties in important areas of application. These include the design of optical amplifiers and lasers, as well as novel optical switches. Research topics in this volume include how to exploit the magnetooptic effect, how to work with the nonlinear optical response of materials, how to predict laser-induced breakdown in efficient optical devices, and how to handle electron cloud distortion in femtosecond processes.

Fundamentals of Nonlinear Optics

Fundamentals of Nonlinear Optics PDF Author: Peter E. Powers
Publisher: CRC Press
ISBN: 1498736866
Category : Science
Languages : en
Pages : 539

Get Book Here

Book Description
Praise for the 1st Edition: "well written and up to date.... The problem sets at the end of each chapter reinforce and enhance the material presented, and may give students confidence in handling real-world problems." ―Optics & Photonics News "rigorous but simple description of a difficult field keeps the reader’s attention throughout.... serves perfectly for an introductory-level course." ―Physics Today This fully revised introduction enables the reader to understand and use the basic principles related to many phenomena in nonlinear optics and provides the mathematical tools necessary to solve application-relevant problems. The book is a pedagogical guide aimed at a diverse audience including engineers, physicists, and chemists who want a tiered approach to understanding nonlinear optics. The material is augmented by numerous problems, with many requiring the reader to perform real-world calculations for a range of fields, from optical communications to remote sensing and quantum information. Analytical solutions of equations are covered in detail and numerical approaches to solving problems are explained and demonstrated. The second edition expands the earlier treatment and includes: A new chapter on quantum nonlinear optics. Thorough treatment of parametric optical processes covering birefringence, tolerances and beam optimization to design and build high conversion efficiency devices. Treatment of numerical methods to solving sets of complex nonlinear equations. Many problems in each chapter to challenge reader comprehension. Extended treatment of four-wave mixing and solitons. Coverage of ultrafast pulse propagation including walk-off effects.

The Elements of Nonlinear Optics

The Elements of Nonlinear Optics PDF Author: Paul N. Butcher
Publisher: Cambridge University Press
ISBN: 9780521424240
Category : Science
Languages : en
Pages : 364

Get Book Here

Book Description
There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.

Nonlinear Meta-Optics

Nonlinear Meta-Optics PDF Author: Costantino De Angelis
Publisher: CRC Press
ISBN: 1351269755
Category : Technology & Engineering
Languages : en
Pages : 345

Get Book Here

Book Description
This book addresses fabrication as well as characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects. The visible range as well as near and far infrared spectral region will be considered with a view to different envisaged applications. The book covers the current key challenges of the research in the area, including: exploiting new material platforms, fully extending the device operation into the nonlinear regime, adding re-configurability to the envisaged devices and proposing new modeling tools to help in conceiving new functionalities. • Explores several topics in the field of semiconductor nonlinear nanophotonics, including fabrication, characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects • Describes the research challenges in the field of optical metasurfaces in the nonlinear regime • Reviews the use and achievements of all-dielectric nanoantennas for strengthening the nonlinear optical response • Describes both theoretical and experimental aspects of photonic devices based on semiconductor optical nanoantennas and metasurfaces • Gathers contributions from several leading groups in this research field to provide a thorough and complete overview of the current state of the art in the field of semiconductor nonlinear nanophotonics Costantino De Angelis has been full professor of electromagnetic fields at the University of Brescia since 1998. He is an OSA Fellow and has been responsible for several university research contracts in the last 20 years within Europe, the United States, and Italy. His technical interests are in optical antennas and nanophotonics. He is the author of over 150 peer-reviewed scientific journal articles. Giuseppe Leo has been a full professor in physics at Paris Diderot University since 2004, and in charge of the nonlinear devices group of MPQ Laboratory since 2006. His research areas include nonlinear optics, micro- and nano-photonics, and optoelectronics, with a focus on AlGaAs platform. He has coordinated several research programs and coauthored 100 peer-reviewed journal articles, 200 conference papers, 10 book chapters and also has four patents. Dragomir Neshev is a professor in physics and the leader of the experimental photonics group in the Nonlinear Physics Centre at Australian National University (ANU). His activities span over several branches of optics, including nonlinear periodic structures, singular optics, plasmonics, and photonic metamaterials. He has coauthored 200 publications in international peer-reviewed scientific journals.

Principles of Nonlinear Optical Spectroscopy

Principles of Nonlinear Optical Spectroscopy PDF Author: Shaul Mukamel
Publisher: Oxford University Press on Demand
ISBN: 9780195132915
Category : Science
Languages : en
Pages : 543

Get Book Here

Book Description
This textbook presents a systematic and unifying viewpoint for a wide class of nonlinear spectroscopic techniques in time domain and frequency domain. It is directed towards active researchers in physics, optics, chemistry, and materials science, as well as graduate students who enter this complex and rapidly developing field. Nonlinear optical interactions of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. One of the major obstacles facing researchers in this field, however, is the flood of experimental techniques and terminologies, which create a serious language barrier. The general microscopic correlation function approach to the nonlinear optical response developed in this book is essential for understanding the relationships among different techniques and a comparison of their information content, the design of new measurements, and for a systematic comparison of the optical response of different systems such as dyes in solutions, atoms and molecules in the gas phase, liquids, molecular aggregates and superlatives, and semiconductor nanostructures. The approach is based on formulating the nonlinear response by representing the state of matter by the density matrix and following its evolution on Liouville space. Current active research areas such as femtosecond time-domain techniques, semi-classical and wave-packet dynamics, pulse shaping, pulse locking, exciton confinement, and the interplay of electronic, nuclear and field coherence are emphasized. The material has been developed from the author's highly successful interdisciplinary course at the University of Rochester attended by science and engineering graduate students.