Author: Stavros C. Farantos
Publisher: Springer
ISBN: 3319099884
Category : Science
Languages : en
Pages : 165
Book Description
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.
Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics
Author: Stavros C. Farantos
Publisher: Springer
ISBN: 3319099884
Category : Science
Languages : en
Pages : 165
Book Description
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.
Publisher: Springer
ISBN: 3319099884
Category : Science
Languages : en
Pages : 165
Book Description
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.
Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics
Author: Stavros Farantos
Publisher: Springer
ISBN: 9783319099897
Category : Science
Languages : en
Pages : 158
Book Description
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.
Publisher: Springer
ISBN: 9783319099897
Category : Science
Languages : en
Pages : 158
Book Description
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.
Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics
Author: Peter Betsch
Publisher: Springer
ISBN: 3319318799
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application of structure-preserving methods is illustrated by a number of examples dealing with, among others, nonlinear beams and shells, large deformation problems, long-term simulations and coupled thermo-mechanical multibody systems. In addition it links novel time integration methods to frequently used methods in industrial multibody system simulation.
Publisher: Springer
ISBN: 3319318799
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application of structure-preserving methods is illustrated by a number of examples dealing with, among others, nonlinear beams and shells, large deformation problems, long-term simulations and coupled thermo-mechanical multibody systems. In addition it links novel time integration methods to frequently used methods in industrial multibody system simulation.
Simulating Hamiltonian Dynamics
Author: Benedict Leimkuhler
Publisher: Cambridge University Press
ISBN: 9780521772907
Category : Mathematics
Languages : en
Pages : 464
Book Description
Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.
Publisher: Cambridge University Press
ISBN: 9780521772907
Category : Mathematics
Languages : en
Pages : 464
Book Description
Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.
Computational Molecular Dynamics: Challenges, Methods, Ideas
Author: Peter Deuflhard
Publisher: Springer Science & Business Media
ISBN: 3642583601
Category : Mathematics
Languages : en
Pages : 500
Book Description
On May 21-24, 1997 the Second International Symposium on Algorithms for Macromolecular Modelling was held at the Konrad Zuse Zentrum in Berlin. The event brought together computational scientists in fields like biochemistry, biophysics, physical chemistry, or statistical physics and numerical analysts as well as computer scientists working on the advancement of algorithms, for a total of over 120 participants from 19 countries. In the course of the symposium, the speakers agreed to produce a representative volume that combines survey articles and original papers (all refereed) to give an impression of the present state of the art of Molecular Dynamics. The 29 articles of the book reflect the main topics of the Berlin meeting which were i) Conformational Dynamics, ii) Thermodynamic Modelling, iii) Advanced Time-Stepping Algorithms, iv) Quantum-Classical Simulations and Fast Force Field and v) Fast Force Field Evaluation.
Publisher: Springer Science & Business Media
ISBN: 3642583601
Category : Mathematics
Languages : en
Pages : 500
Book Description
On May 21-24, 1997 the Second International Symposium on Algorithms for Macromolecular Modelling was held at the Konrad Zuse Zentrum in Berlin. The event brought together computational scientists in fields like biochemistry, biophysics, physical chemistry, or statistical physics and numerical analysts as well as computer scientists working on the advancement of algorithms, for a total of over 120 participants from 19 countries. In the course of the symposium, the speakers agreed to produce a representative volume that combines survey articles and original papers (all refereed) to give an impression of the present state of the art of Molecular Dynamics. The 29 articles of the book reflect the main topics of the Berlin meeting which were i) Conformational Dynamics, ii) Thermodynamic Modelling, iii) Advanced Time-Stepping Algorithms, iv) Quantum-Classical Simulations and Fast Force Field and v) Fast Force Field Evaluation.
Nonlinear Dynamics, Volume 2
Author: Gaetan Kerschen
Publisher: Springer Science & Business Media
ISBN: 3319045229
Category : Technology & Engineering
Languages : en
Pages : 314
Book Description
This second volume of eight from the IMAC - XXXII Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Linear Systems Substructure Modelling Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data
Publisher: Springer Science & Business Media
ISBN: 3319045229
Category : Technology & Engineering
Languages : en
Pages : 314
Book Description
This second volume of eight from the IMAC - XXXII Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Linear Systems Substructure Modelling Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data
Smooth Particle Applied Mechanics: The State Of The Art
Author: William Graham Hoover
Publisher: World Scientific
ISBN: 9814477184
Category : Mathematics
Languages : en
Pages : 315
Book Description
This book takes readers through all the steps necessary for solving hard problems in continuum mechanics with smooth particle methods. Pedagogical problems clarify the generation of initial conditions, the treatment of boundary conditions, the integration of the equations of motion, and the analysis of the results. Particular attention is paid to the parallel computing necessary for large problems and to the graphic displays, including debugging software, required for the efficient completion of computational projects.The book is self-contained, with summaries of classical particle mechanics and continuum mechanics for both fluids and solids, computer languages, the stability of numerical methods, Lyapunov spectra, and message-passing parallel computing. The main difficulties faced by meshless particle methods are discussed and the means of overcoming them are illustrated with worked examples.
Publisher: World Scientific
ISBN: 9814477184
Category : Mathematics
Languages : en
Pages : 315
Book Description
This book takes readers through all the steps necessary for solving hard problems in continuum mechanics with smooth particle methods. Pedagogical problems clarify the generation of initial conditions, the treatment of boundary conditions, the integration of the equations of motion, and the analysis of the results. Particular attention is paid to the parallel computing necessary for large problems and to the graphic displays, including debugging software, required for the efficient completion of computational projects.The book is self-contained, with summaries of classical particle mechanics and continuum mechanics for both fluids and solids, computer languages, the stability of numerical methods, Lyapunov spectra, and message-passing parallel computing. The main difficulties faced by meshless particle methods are discussed and the means of overcoming them are illustrated with worked examples.
From Quantum to Classical Molecular Dynamics
Author: Christian Lubich
Publisher: European Mathematical Society
ISBN: 9783037190678
Category : Mathematics
Languages : en
Pages : 164
Book Description
Quantum dynamics of molecules poses a variety of computational challenges that are presently at the forefront of research efforts in numerical analysis in a number of application areas: high-dimensional partial differential equations, multiple scales, highly oscillatory solutions, and geometric structures such as symplecticity and reversibility that are favourably preserved in discretizations. This text addresses such problems in quantum mechanics from the viewpoint of numerical analysis, illustrating them to a large extent on intermediate models between the Schrodinger equation of full many-body quantum dynamics and the Newtonian equations of classical molecular dynamics. The fruitful interplay between quantum dynamics and numerical analysis is emphasized.
Publisher: European Mathematical Society
ISBN: 9783037190678
Category : Mathematics
Languages : en
Pages : 164
Book Description
Quantum dynamics of molecules poses a variety of computational challenges that are presently at the forefront of research efforts in numerical analysis in a number of application areas: high-dimensional partial differential equations, multiple scales, highly oscillatory solutions, and geometric structures such as symplecticity and reversibility that are favourably preserved in discretizations. This text addresses such problems in quantum mechanics from the viewpoint of numerical analysis, illustrating them to a large extent on intermediate models between the Schrodinger equation of full many-body quantum dynamics and the Newtonian equations of classical molecular dynamics. The fruitful interplay between quantum dynamics and numerical analysis is emphasized.
A First Course in Numerical Methods
Author: Uri M. Ascher
Publisher: SIAM
ISBN: 0898719976
Category : Mathematics
Languages : en
Pages : 574
Book Description
Offers students a practical knowledge of modern techniques in scientific computing.
Publisher: SIAM
ISBN: 0898719976
Category : Mathematics
Languages : en
Pages : 574
Book Description
Offers students a practical knowledge of modern techniques in scientific computing.
The Geometry of Hamiltonian Systems
Author: Tudor Ratiu
Publisher: Springer Science & Business Media
ISBN: 1461397251
Category : Mathematics
Languages : en
Pages : 526
Book Description
The papers in this volume are an outgrowth of the lectures and informal discussions that took place during the workshop on "The Geometry of Hamiltonian Systems" which was held at MSRl from June 5 to 16, 1989. It was, in some sense, the last major event of the year-long program on Symplectic Geometry and Mechanics. The emphasis of all the talks was on Hamiltonian dynamics and its relationship to several aspects of symplectic geometry and topology, mechanics, and dynamical systems in general. The organizers of the conference were R. Devaney (co-chairman), H. Flaschka (co-chairman), K. Meyer, and T. Ratiu. The entire meeting was built around two mini-courses of five lectures each and a series of two expository lectures. The first of the mini-courses was given by A. T. Fomenko, who presented the work of his group at Moscow University on the classification of integrable systems. The second mini course was given by J. Marsden of UC Berkeley, who spoke about several applications of symplectic and Poisson reduction to problems in stability, normal forms, and symmetric Hamiltonian bifurcation theory. Finally, the two expository talks were given by A. Fathi of the University of Florida who concentrated on the links between symplectic geometry, dynamical systems, and Teichmiiller theory.
Publisher: Springer Science & Business Media
ISBN: 1461397251
Category : Mathematics
Languages : en
Pages : 526
Book Description
The papers in this volume are an outgrowth of the lectures and informal discussions that took place during the workshop on "The Geometry of Hamiltonian Systems" which was held at MSRl from June 5 to 16, 1989. It was, in some sense, the last major event of the year-long program on Symplectic Geometry and Mechanics. The emphasis of all the talks was on Hamiltonian dynamics and its relationship to several aspects of symplectic geometry and topology, mechanics, and dynamical systems in general. The organizers of the conference were R. Devaney (co-chairman), H. Flaschka (co-chairman), K. Meyer, and T. Ratiu. The entire meeting was built around two mini-courses of five lectures each and a series of two expository lectures. The first of the mini-courses was given by A. T. Fomenko, who presented the work of his group at Moscow University on the classification of integrable systems. The second mini course was given by J. Marsden of UC Berkeley, who spoke about several applications of symplectic and Poisson reduction to problems in stability, normal forms, and symmetric Hamiltonian bifurcation theory. Finally, the two expository talks were given by A. Fathi of the University of Florida who concentrated on the links between symplectic geometry, dynamical systems, and Teichmiiller theory.