Author: Huber, Marco
Publisher: KIT Scientific Publishing
ISBN: 3731503387
Category : Electronic computers. Computer science
Languages : en
Pages : 302
Book Description
By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems.
Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications
Author: Huber, Marco
Publisher: KIT Scientific Publishing
ISBN: 3731503387
Category : Electronic computers. Computer science
Languages : en
Pages : 302
Book Description
By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems.
Publisher: KIT Scientific Publishing
ISBN: 3731503387
Category : Electronic computers. Computer science
Languages : en
Pages : 302
Book Description
By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems.
Nonlinear Filters
Author: Hisashi Tanizaki
Publisher: Springer Science & Business Media
ISBN: 9783540613268
Category : Business & Economics
Languages : en
Pages : 280
Book Description
Nonlinear and nonnormal filters are introduced and developed. Traditional nonlinear filters such as the extended Kalman filter and the Gaussian sum filter give biased filtering estimates, and therefore several nonlinear and nonnormal filters have been derived from the underlying probability density functions. The density-based nonlinear filters introduced in this book utilize numerical integration, Monte-Carlo integration with importance sampling or rejection sampling and the obtained filtering estimates are asymptotically unbiased and efficient. By Monte-Carlo simulation studies, all the nonlinear filters are compared. Finally, as an empirical application, consumption functions based on the rational expectation model are estimated for the nonlinear filters, where US, UK and Japan economies are compared.
Publisher: Springer Science & Business Media
ISBN: 9783540613268
Category : Business & Economics
Languages : en
Pages : 280
Book Description
Nonlinear and nonnormal filters are introduced and developed. Traditional nonlinear filters such as the extended Kalman filter and the Gaussian sum filter give biased filtering estimates, and therefore several nonlinear and nonnormal filters have been derived from the underlying probability density functions. The density-based nonlinear filters introduced in this book utilize numerical integration, Monte-Carlo integration with importance sampling or rejection sampling and the obtained filtering estimates are asymptotically unbiased and efficient. By Monte-Carlo simulation studies, all the nonlinear filters are compared. Finally, as an empirical application, consumption functions based on the rational expectation model are estimated for the nonlinear filters, where US, UK and Japan economies are compared.
Bayesian Filtering and Smoothing
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Nonlinear Filtering
Author: Kumar Pakki Bharani Chandra
Publisher: Springer
ISBN: 3030017974
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
This book gives readers in-depth know-how on methods of state estimation for nonlinear control systems. It starts with an introduction to dynamic control systems and system states and a brief description of the Kalman filter. In the following chapters, various state estimation techniques for nonlinear systems are discussed, including the extended, unscented and cubature Kalman filters. The cubature Kalman filter and its variants are introduced in particular detail because of their efficiency and their ability to deal with systems with Gaussian and/or non-Gaussian noise. The book also discusses information-filter and square-root-filtering algorithms, useful for state estimation in some real-time control system design problems. A number of case studies are included in the book to illustrate the application of various nonlinear filtering algorithms. Nonlinear Filtering is written for academic and industrial researchers, engineers and research students who are interested in nonlinear control systems analysis and design. The chief features of the book include: dedicated coverage of recently developed nonlinear, Jacobian-free, filtering algorithms; examples illustrating the use of nonlinear filtering algorithms in real-world applications; detailed derivation and complete algorithms for nonlinear filtering methods, which help readers to a fundamental understanding and easier coding of those algorithms; and MATLAB® codes associated with case-study applications, which can be downloaded from the Springer Extra Materials website.
Publisher: Springer
ISBN: 3030017974
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
This book gives readers in-depth know-how on methods of state estimation for nonlinear control systems. It starts with an introduction to dynamic control systems and system states and a brief description of the Kalman filter. In the following chapters, various state estimation techniques for nonlinear systems are discussed, including the extended, unscented and cubature Kalman filters. The cubature Kalman filter and its variants are introduced in particular detail because of their efficiency and their ability to deal with systems with Gaussian and/or non-Gaussian noise. The book also discusses information-filter and square-root-filtering algorithms, useful for state estimation in some real-time control system design problems. A number of case studies are included in the book to illustrate the application of various nonlinear filtering algorithms. Nonlinear Filtering is written for academic and industrial researchers, engineers and research students who are interested in nonlinear control systems analysis and design. The chief features of the book include: dedicated coverage of recently developed nonlinear, Jacobian-free, filtering algorithms; examples illustrating the use of nonlinear filtering algorithms in real-world applications; detailed derivation and complete algorithms for nonlinear filtering methods, which help readers to a fundamental understanding and easier coding of those algorithms; and MATLAB® codes associated with case-study applications, which can be downloaded from the Springer Extra Materials website.
Visual Reconstruction
Author: Andrew Blake
Publisher: Mit Press
ISBN: 9780262524063
Category : Art
Languages : en
Pages : 188
Book Description
A unified and highly original approach to the treatment of continuity in vision.
Publisher: Mit Press
ISBN: 9780262524063
Category : Art
Languages : en
Pages : 188
Book Description
A unified and highly original approach to the treatment of continuity in vision.
Nonlinear Filters
Author: Sueo Sugimoto
Publisher: Ohmsha, Ltd.
ISBN: 4274805026
Category : Mathematics
Languages : en
Pages : 457
Book Description
This book covers a broad range of filter theories, algorithms, and numerical examples. The representative linear and nonlinear filters such as the Kalman filter, the steady-state Kalman filter, the H infinity filter, the extended Kalman filter, the Gaussian sum filter, the statistically linearized Kalman filter, the unscented Kalman filter, the Gaussian filter, the cubature Kalman filter are first visited. Then, the non-Gaussian filters such as the ensemble Kalman filter and the particle filters based on the sequential Bayesian filter and the sequential importance resampling are described, together with their recent advances. Moreover, the information matrix in the nonlinear filtering, the nonlinear smoother based on the Markov Chain Monte Carlo, the continuous-discrete filters, factorized filters, and nonlinear filters based on stochastic approximation method are detailed. 1 Review of the Kalman Filter and Related Filters 2 Information Matrix in Nonlinear Filtering 3 Extended Kalman Filter and Gaussian Sum Filter 4 Statistically Linearized Kalman Filter 5 The Unscented Kalman Filter 6 General Gaussian Filters and Applications 7 The Ensemble Kalman Filter 8 Particle Filter 9 Nonlinear Smoother with Markov Chain Monte Carlo 10 Continuous-Discrete Filters 11 Factorized Filters 12 Nonlinear Filters Based on Stochastic Approximation Method
Publisher: Ohmsha, Ltd.
ISBN: 4274805026
Category : Mathematics
Languages : en
Pages : 457
Book Description
This book covers a broad range of filter theories, algorithms, and numerical examples. The representative linear and nonlinear filters such as the Kalman filter, the steady-state Kalman filter, the H infinity filter, the extended Kalman filter, the Gaussian sum filter, the statistically linearized Kalman filter, the unscented Kalman filter, the Gaussian filter, the cubature Kalman filter are first visited. Then, the non-Gaussian filters such as the ensemble Kalman filter and the particle filters based on the sequential Bayesian filter and the sequential importance resampling are described, together with their recent advances. Moreover, the information matrix in the nonlinear filtering, the nonlinear smoother based on the Markov Chain Monte Carlo, the continuous-discrete filters, factorized filters, and nonlinear filters based on stochastic approximation method are detailed. 1 Review of the Kalman Filter and Related Filters 2 Information Matrix in Nonlinear Filtering 3 Extended Kalman Filter and Gaussian Sum Filter 4 Statistically Linearized Kalman Filter 5 The Unscented Kalman Filter 6 General Gaussian Filters and Applications 7 The Ensemble Kalman Filter 8 Particle Filter 9 Nonlinear Smoother with Markov Chain Monte Carlo 10 Continuous-Discrete Filters 11 Factorized Filters 12 Nonlinear Filters Based on Stochastic Approximation Method
Beyond the Kalman Filter: Particle Filters for Tracking Applications
Author: Branko Ristic
Publisher: Artech House
ISBN: 9781580538510
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.
Publisher: Artech House
ISBN: 9781580538510
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.
Nonlinear Filtering
Author: Jitendra R. Raol
Publisher: CRC Press
ISBN: 1498745180
Category : Technology & Engineering
Languages : en
Pages : 581
Book Description
Nonlinear Filtering covers linear and nonlinear filtering in a comprehensive manner, with appropriate theoretic and practical development. Aspects of modeling, estimation, recursive filtering, linear filtering, and nonlinear filtering are presented with appropriate and sufficient mathematics. A modeling-control-system approach is used when applicable, and detailed practical applications are presented to elucidate the analysis and filtering concepts. MATLAB routines are included, and examples from a wide range of engineering applications - including aerospace, automated manufacturing, robotics, and advanced control systems - are referenced throughout the text.
Publisher: CRC Press
ISBN: 1498745180
Category : Technology & Engineering
Languages : en
Pages : 581
Book Description
Nonlinear Filtering covers linear and nonlinear filtering in a comprehensive manner, with appropriate theoretic and practical development. Aspects of modeling, estimation, recursive filtering, linear filtering, and nonlinear filtering are presented with appropriate and sufficient mathematics. A modeling-control-system approach is used when applicable, and detailed practical applications are presented to elucidate the analysis and filtering concepts. MATLAB routines are included, and examples from a wide range of engineering applications - including aerospace, automated manufacturing, robotics, and advanced control systems - are referenced throughout the text.
Optimal State Estimation
Author: Dan Simon
Publisher: John Wiley & Sons
ISBN: 0470045337
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.
Publisher: John Wiley & Sons
ISBN: 0470045337
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.
Nonlinear Data Assimilation
Author: Peter Jan Van Leeuwen
Publisher: Springer
ISBN: 3319183478
Category : Mathematics
Languages : en
Pages : 130
Book Description
This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.
Publisher: Springer
ISBN: 3319183478
Category : Mathematics
Languages : en
Pages : 130
Book Description
This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.